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How do the polycyclic aromatic hydrocarbons 
approach infinity? 
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Abstract-Various topological factors governing the electronic 
properties of infinitely large periodic polycyclic benzenoids are 
analyzed graph-theoretically by drawing the density of states (DS). 
The existence or non-existence of NBMO's in the hypothetical cyclic 
dimer of the network are shown to be crucial for the profile of DS. 

CATAHEXES AND PERIHEXES 
Owing to the rapid progress in organic synthesis the number of experimentally 
accessible polycyclic aromatic hydrocarbons is ever growing (1,2). On the 
other hand, existence of a group of large polycyclic aromatic hydrocarbons 
is reported both in interstellar materials and soot ( 3 ) .  Existence of ball- 
shaped C60 molecule and its analogues is also reported and postulated (4,5). 
In principle, a given polycyclic aromatic compound belongs to a certain 
series of molecules which, at least mathematically, grow and converge to an 
infinitely large network with varying properties. In this talk let us con- 
fine ourselves to benzenoid hydrocarbons. Several series of those hydrocar- 
bons are known to have interesting electronic and thermodynamic properties 
potentially applied to new materials, e.g., of highly conductive, semi- 
conductive, or ferro-magnetic property. The relationship between the stabi- 
lity and topological structure of benzenoid hydrocarbons seems to be well 
analyzed by many didfferent theoretical techniques, e.g., molecular orbital 
(MO), valence bond (VB), resonance theory (RT), graph theory (GT), etc. ( 6 -  
11). The graph-theoretical MO (GTMO) analysis has.clarified the mathematical 
secret and thus the limitation of the so-called "Huckel's 4n+2 rule", and 
succeeded in extending this concept to polycyclic sysmtems (12). However, if 
we apply this methodology toward large 2-dimensional network converging to 
graphite, we shall soon be overwhelmed by the "combinatorial explosion". 

Benzenoid hydrocarbons are classified into catacondensed and pericondensed 
ones, and may be called catahexes and perihexes, respectively (6). From GT 
consideration a great gap is found to exist between these two types of 
graphs. Although for catahexes the structure-activity relationship is satis- 
factorily analyzed mathematically, a large number of interesting properties 
are left unsolved for perihexes ( 1 3 ) .  The number of possible isomers of 
catahexes can be derived from the group-theoretical treatment by Polya and 
expressed in terms of a set of recursion formulas (14). However, for the 
counting of perihexes we are forced to choose computer searching (15). The 
useful concept of the aromatic sextet proposed by Clar needs to be modified 
as to propose the "super-sextet" when "fat" benzenoids are considered (1 6). 

The purpose of the present talk is to survey the effect of the topological 
structure, especially the peripheral structure, of infinitely large perihexes 
on their r-electronic stabilities through GTMO treatment. Before going into 
the main theme of this talk preliminary remark should be exposed on the 
topological dependency of the K(G) number and stability of catahexes. 

It is well known that K(G) of a benzenoid hydrocarbon increases with the 
number of kinks and branches. This feature is dramatically shown by quite 
the different mathematical expressions for the K(G) number of the linear (1) 
and zigzag ( 2 )  polyacenes. 

445 



446 

1.5 l.O'_ 

H. HOSOYA et a/. 

7 
3.0 1 (a) 

1.0 

o.oo.c 5.0 10.0 15.0 20.0 a.0 3.0 
l f  

k%E2!L5 

I I 

20 

..= 1 

3=== 

2.5 I * 
0.0";" 10.0 20. C 3.0 

3.0 2.5 ; (el 

Fig. 1 

3.0 10.0 dkldx w o  0.0 

0.00.0 10.0 20.0 3.0 

I 
1.0 ,. 

1.5 .. 

20. 

t.5 .. 

3.0 - 
(d 1 

10.0 20.0 3.0 

The K(G) values of Eq. [ I ]  increases only linearly with n, while that of Eq. 
[ 2 1  exponentially explodes. 
chemical properties, such as, spectroscopic, photoconductive, thermodynamic, 
and chemically reactive properties, which reflect the difference in this 
simple mathematical index. 

According to Clar the instability of 1 can be explained by the weak aromatic 
sextet character diluted all over the component hexagons in a row, whereas in 
- 2 so many aromatic sextets as half the number of the component hexagons can 
be resonant with each other ( 1  7 ) .  

There have been known a number of physico- 
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A number of interesting mathematical properties of K(G) and aromatic sextet 
for various series of benzenoid hydrocarbons are exposed and discussed (16- 
1 9 ) .  If we extend the GTMO method this discussion can be further deepened. 

DENSITY OF STATES 
Another theoretical quantity that well represents the electronic state of a 
large conjugated network is the density of states, dk/dx. In Fig. la the 
HMO energy levels of the occupied n orbitals of the sereis of 1 are plotted 
against the number, n, of the composed hexagons. The vacant orbitals are 
omitted from the figures, since they are just the mirror image of the occu- 
pied orbitals as guaranteed by the pairing theorem ( 2 0 ) .  With the increase 
of n the the number, dk, of the energy levels per given energy range, dx, 
increases but converges to a certain band profile as Fig. lb, i.e., the 
density of states, dk/dx. Actually for the infinitely large n-electronic 
network of 1 one can obtain by using the periodic boundary condition the 
following result: 
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which is derived from the equation governing the orbital energies of the 
network (21). Since Ledermann already proved that the profile of the 
dk/dx curve is independent of the boundary condition, all our calculations 
were performed for the infinitely large cyclic polymers (22). The merit of 
the HMO treatment is that for a fairly large number of cases one can derive 
analytical expressions of dk/dx. Although the rigorous expressions for the 
several members of multi-layered polyacenes, 3-6, and multi-layered zigzag 
polyacenes, 1-9, were not obtained, we can draw quite accurately their dk/dx 
curves as in Figs. lc-f and 2c-e (23). 

It is to be noted that for all the members 
of the former series, i.e., the homologues 
of the linear polyacene, no HOMO-LUMO band 
gaps are observed. Of course, if bond 
alternation, such as 
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is taken into consideration, we can observe a small HOMO-LUMO gap but not 
yet compatible with the large gap for the zigzag polyacene networks. A large 
number of the variable-$,y version of PPP-type claculations for the same 
series of hydrocarbons reveals that the HOMO-LUMO gaps obtained from the HMO 
and PPP methods are almost linearly correlated with each other giving a good 
support for our HMO calculation (23). 

Contrary to the case of the homologues of 1, the homologues of 2. show an 
interesting feature in dk/dx. Namely, while the singly (21, doubly (z), and 
quadruply ( 9 )  zigzag polyacenes have a reldtively large HOMO-LUMO gap, the 
triply zigzag polyacene ( 8 )  has no gap as seen in Fig. 2d. It is to be 
noted that the polyacetylene network without bond-alternation (10) can be 
deemed as the zero-th member of the 'In-ply" zigzag polyacene and has no HOMO- 
LUMO gap (See Fig. 2f). Quite similarly the homologous series of the poly-p- 
phenylene ( 1 1 1 ,  polynaphthalene ( 1 2 1 ,  polyanthracene ( 1 3 1 ,  etc. were found to 
have some periodicity in the zero HOMO-LUMO gap. The results are shown in 
Fig. 3a-e, where the members of n=2 (12) and 5 (15) have zero HOMO-LUMO gap 
contrary to the other members of relatively stable Tr-electronic networks. 
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CYCLIC DlMER 
Although it is evident in the routine derivation of the density of states of 
periodic networks the importance of the hypothetical cyclic dimer (monomer in 
some*cases) has not been recognized until quite recently (21,23,24). Namely, 
almost all the singular points of the dk/dx curve are nothing else but the 
energy levels of the cyclic dimer. For example, the secular determinant of 
the cyclic dimer 3 of 1 can be. factored out to be the product of cyclic 
Huckel monomer 12 and cyclic Mobius monomer la as shown in Fig. 4 (21,24), 
where the symbols a and a respectively mean the additive contributions 
of $ and - a  to the corresponding bond. 

Huckel Mobius 
1+1 1+1 1-1 1-1 
aLn 17 a1a 18 

Fig. 4 

Note that this determinant has the same form as the denominator of.Eq. [3]. 
Thus in this case all the orbital energies of the cyclic dimer of 1 coincide 
with the singular points of its density of states. Further, note that the 
dk/dx curve of 1 has no HOMO-LUMO gap comes from the fact that the cyclic 
dimer 3 of the "kagome" graph has the following NBMO's. z x z x  
Similarly, all the cyclic dimer graphs for the networks in Fig. Ib-f are 
shown to be kagome graphs and have a pair of NBMO's as 

Further, it is straightforward that among all the networks in Figs. 1-3 only 
the cyclic dimer of such networks that hve no HOMO-LUMO gap has NBMO's, and 
vice versa. Namely, in Fig. 3f are given the NBMO's of the cyclic monomers 
of 12 and 3 indicative of no HOMO-LUMO gap in the density of states of their 
polymer networks. Figure 5 demonstrates the NBMO's of the cyclic dimers of 
- 10 and 8 indicative of no HOMO-LUMO gap. 

Thus the secret of the infinitely large perihex netowrks are shown to be 
hidden in the hypothetical cyclic dimer graphs, which are either polyomino or 
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kagome graphs. By doing extensive calculations of variable- , version of 
PPP MO for the hypothetical cyclic dimers we could reconfirm these findings. 
The interesting GT judgement for zero HOMO-LUMO gap by searching the NBMO's 
in a given polyomino or kagome graph was also shown to be essentially valid 
by the PPP calculations (23). Works are being in progress. 
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