Simulation of the nitrogen cycle in microbial systems Toshio TANAKA*1 and Koji TANAKA*2 *1Department of Applied Physics and Chemistry, Faculty of Engineering, Fukui Institute of Technology, Gaku-en, Fukui 910, Japan Abstract - The electrochemical reduction of $\text{HOC}_2\text{H}_4\text{N}_3$ with a $(\underline{n}-\text{Bu}_4\text{N})_3[\text{Mo}_2-\text{Fe}_6\text{Sg}(\text{SPh})_9]$ modified glassy carbon electrode([Mo-Fe]/GCE) in H_2O at -1.25 V \underline{vs} . SCE produces NH3 (and $\text{HOC}_2\text{H}_4\text{NH}_2)$ as an eight-electron reduction product \underline{via} N₂H₂, and N₂H₄ successively. Similarly, $\underline{n}-\text{C}_5\text{H}_1\text{N}_3$ is reduced by $[\text{MoFe}_3\text{S}_4(\text{SC}_6\text{H}_4-\underline{p}-\underline{n}-\text{Cg}_8\text{H}_17)_3(\text{O}_2\text{Cg}_6\text{Cl}_4)(\text{solvent})]^2-}$ in an aqueous micellar solution containing Na₂S₂O₄ and methyl viologen. The reduction of NO₃- under the electrolysis conditions is catalyzed by [Mo-Fe]/GCE to yield NH3 as an assimilation product \underline{via} NO₂-, NO-, and NH₂OH, while the electrochemical reduction of NO₂- at -1.10 V \underline{vs} . SCE results in the formation of N₂O as a dissimilation product. ### INTRODUCTION Inorganic nitrogen compounds, N_2 , NH_3 , NO_3^- , and so on, in the natural world are regulated in amount by the nitrogen cycle (Scheme 1). Among those inorganic nitrogen molecules only NH_3 can be converted into organic nitrogen molecules in the metabolism. Most of the higher plants and micro-orgasms that are not provided with the ability of N_2 fixation reduce NO_3^- and NO_2^- to produce NH_3 (assimilation). On the other hand, various denitrification bacteria reduce NO_3^- and NO_2^- to N_2O , which is further reduced to N_2 (dissimilation). These enzymatic reductions require multi-electrons. Such multi-electron reductions of those substrates can be performed by using an Fe-S or NO_2^- constrains a catalysts under the controlled potential electrolysis conditions. #### Scheme 1 ### MULTI-ELECTRON REDUCTION OF ALKYLAZIDE (AND DINITROGEN) TO AMMONIA (ref. 1) Under the electrolysis conditions at -1.25 V vs. SCE with an Hg working electrode in MeOH-THF (1:1 v/v, 20 cm³) containing [Mo₂Fe₆Sa-(SPh)₉]³- (1: 8.0 x 10⁻⁴ mol dm⁻³), CH₃N₃ (6.6 x 10⁻² mol dm⁻³), and LiCl (0.24 mol dm⁻³) as a supporting electrolyte under He atmosphere, the reduction of CH₃N₃ produces equal amounts of CH₃NH₂ and N₂ with a current efficiency nearly 100%, suggesting that almost all electrons transferred from the electrode to the clusters are consumed in the two-electron reduction of CH_3N_3 (eq. 1). On the other hand, when the initial concentration of CH_3N_3 is decreased to 8.7 x 10^{-3} mol dm⁻³, the six-and eight-electron reductions of CH_3N_3 take place to afford N_2H_4 (eq. 2) and NH_3 (eq. 3), respectively, though the amounts are small. Thus, in a homogeneous system the electron transfer from the electrode to the cluster may not be so effective for the multi-electron reduction of CH_3N_3 , since only the clusters on the electrode surface can accept additional electrons from the electrode to prompt the multi-electron reductions. ^{*2}Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan The reduction of $HOC_2H_{\perp}N_3$ by an $\underline{n}-Bu_{\perp}N$ salt of 1 modified glassy carbon electrode ([Mo-Fe]/GCE) under the controlled potential eletrolysis at -1.25 V vs. SCE, therefore, was conducted in an aqueous solution (pH = 10) containing HOC₂H₄N₃ and H3PO4-NaOH buffer as a supporting electrolyte. The reduction produces not only NH_3 but also H_2 ; the turnover number for the formation of NH_3 , based on the amount of modified clusters, attains more than 1 x 104 in 2 h (Fig. 1 and Table 1). The reaction ceases within 2 h irrespective of the initial concentration of HOC2H4N3 and the amount of NH3 formed is proportional to the concentration. Thus, the [Mo-Fe]/GCE can efficiently be used for multi-electron reductions of Noase substrates. It has been proposed that N₂ase reduces N₂ to yield NH₃ via N₂H₂ and N₂H₄ as intermediates. Although the existence of neither free nor enzyme-bound N₂H₂ has so far been identified in the reduction of N₂ by N₂ase. In the present study, the reduction of HOC₂H₄N₃ by [Mo-Fe]/GCE in H₂O in the presence of allyl alcohol under electrolysis at -1.25 V vs. SCE produces N₂ and HOC₂H₄-NH₂ together with H₂; neither NH₃ nor N₂H₄ has been formed at all, suggesting that N₂H₂ is involved as a reaction intermediate for the formation of N₂H₄ and NH₃ in the reduction of HOC₂H₄N₃ by [Mo-Fe]/GCE. Fig. 1. The reduction of $HOC_2H_4N_3$ by [Mo-Fe]/GCE (4.2 x 10^{-9} mol/3.1 cm²) at -1.25 V vs. SCE in H_3PO_4 -NaOH buffer (0.2 mol dm⁻³, 20 cm³). The amount of N_2H_4 formed is omitted. Table 1. Amounts of the products in the reduction of $HOC_2H_4N_3$ catalyzed by [Mo-Fe]/GCE (4.2 x 10⁻⁹ mol/3.1 cm²) at -1.25 V vs. SCE | HOC2H4N3ª | Time
min | Product mol / Cluster mol | | | | | | | |--------------------------------------|--------------------------|---------------------------|-------------------|--|---------------------|-------------------------------|--|--| | mol | | H ₂ | N ₂ | HOC2H4NH2 | NH ₃ | N ₂ H ₄ | | | | 50
100
300
160 ^b | 120
120
120
240 | 7.3×10^3 | 2.1×10^4 | 1.2 x 10 ⁴
2.4 x 10 ⁴
7.1 x 10 ⁴
10.8 ^c | 4.4×10^{3} | 1.6×10^{2} | | | aIn a 0.2 mol dm⁻³ H₃PO₄-NaOH buffer (20 cm³). BReduction of CH₃N₃ catalyzed by $[Mo_2Fe6S_8(SPh)_9]^{3-}$ in MeOH-THF (20 cm³). CH₃NH₂. # REDUCTION OF $n-C_5H_5N_3$ BY $Na_2S_2O_4$, CATALYZED BY Mo-Fe-S AND Fe-S SINGLE CUBANE CLUSTERS IN AQUEOUS MICELLAR SOLUTIONS (ref. 2) The comparison of the catalytic activities between Mo and Fe atoms toward multi-electron reductions of N2ase or pseudo-N2ase substrates may be important in connection with the fact that the reduction of N2 by N2ase takes place with eight-electrons to give two moles of NH3 and one mole of H2. Thus, the reductions of \underline{n} -C5H11N3 catalyzed by $[MoFe_3S_4(SR)_3(0_2C_6Cl_4)-(L)]^2-(2: R = C6H_4-p-n-C8H17, L = Me_2CO or DMF)$ and $[Fe_4S_4(SR)_4]^2-(3)$ solubilized in aqueous Triton X-100 micellar solutions containing Na₂S₂O₄ and methylviologen dibromide (MVBr₂). The cyclic voltammograms of clusters 2 (L = DMF) and 3 both exhibit the (2-/3-) redox couple at E $_{1/2}$ = -0.64 V $_{\underline{vs}}$. SCE in an aqueous Triton X-100 micellar solution at pH 7.0. Thus, both clusters can be reduced by Na $_2$ S $_2$ O $_4$ (E $^\circ$ = -0.90 V $_{\underline{vs}}$. SCE at pH 9.2) in aqueous micellar solutions. In addition, the reduced species produced in the reduction of cluster 2 or 3 with Na $_2$ S $_2$ O $_4$ reduces $_{\underline{n}}$ -C $_5$ H $_1$ N $_3$ catalytically to afford almost equal amounts of $_{\underline{n}}$ -C $_5$ H $_1$ NH $_2$ and N $_2$ in an aqueous micellar solution at pH 6.0 (Table 2). When MV $^{2+}$ was added to the reaction mixture, the electron flow from S $_2$ O $_4$ $^{2-}$ in water to clusters 2 or 3 in micelles was accelerated to increase the rates of reaction by 20 and 50 times, respectively, compared Table 2. Reduction of n-C5H11N3 (2.0 x 10^{-2} mol dm⁻³) by Na₂S₂O₄ (8.0 x 10^{-2} mol dm⁻³) in aqueous micellar solutions (pH 6.0) of 2 or 3 (2.0 x 10^{-4} mol dm⁻³) in the absence and presence of MVBr₂ at 30°C for 1 h | Cluster | WV2+ | Solvent for | Product mol / Cluster mol | | | | |-----------------------|--|---|------------------------------------|--|-------------------------------|------------------------| | | mol dm ⁻³ | solubilization | N ₂ | <u>n</u> -C ₅ H ₁₁ NH ₂ | N ₂ H ₄ | NH ₃ | | 2
3
2
2
3 | 0
0
2.0 x 10 ⁻⁴
2.0 x 10 ⁻⁴
2.0 x 10 ⁻⁴ | (CH ₃) ₂ CO
(CH ₃) ₂ CO
(CH ₃) ₂ CO
DMF
(CH ₃) ₂ CO | 5.4
1.1
90.1
41.8
16.8 | 5.6
1.4
75.0
50.5
16.1 | 0
0
0.5
0.5 | 0
0
20.3
12.4 | with those in the absence of MV^{2+} . In addition, the reduction catalyzed by cluster 2 gives considerable amounts of N_2H_4 and NH_3 as well as N_2 and $\underline{n}-C_5H_{11}NH_2$, while the reduction of $\underline{n}-C_5H_{11}N_3$ catalyzed by cluster 3 produces only $\underline{n}-C_5H_{11}NH_2$ and N_2 even in the presence of \overline{MV}^{2+} (Table 2). Thus, 2 is superior to 3 as the catalyst for N_2 ase model reactions under the present experimental conditions. A striking difference between 2 and 3 toward the reduction of $\underline{n}-C_5H_{11}N_3$ may be associated with the fact that $\underline{n}-C_5H_{11}N_3$ functions as an electron acceptor and donor to the Mo atom of the MoFe $_3S_4$ core and the Fe atom of the Fe $_4S_4$ core, respectively. This result is the first experimental support for the view that Mo of the MoFe-co may be the active site of N_2 ase reactions. ## ASSIMILATORY AND DISSIMILATORY REDUCTION OF NO₃⁻ AND NO₂⁻ WITH [Mo-Fe]/GCE (ref. 3 and 4) The cyclic voltammogram of [Mo-Fe]/GCE in water (pH 10) containing NaNO₃ and an ${\rm H}_3{\rm PO}_4$ -NaOH buffer (supporting electrolyte) shows the cathodic current stronger by about two times than that in the absence of NaNO₃ at -1.25 V vs. SCE, suggesting that [Mo-Fe]/GCE can reduce ${\rm NO}_3^{-1}$. The controlled potential electrolysis with [Mo-Fe]/GCE at -1.25 V vs. SCE in H₂O (pH 10) containing NaNO₃ and H₃PO₄-NaOH buffer produces NO₂-, NH₃, and H₂ catalytically (Fig. 2). The amount of NO₂- formed increases with time for the initial 3 h, but thereafter remains almost constant. On the other hand, the amount of NH₃ increases linearly with time after a lapse of about 1 h. The current efficiencies for the formation of NO₂-, NH₃, and H₂ were 7.7, 80.3, and 11.3%, respectively, during 5 h, suggesting that only the reductions of NO₃- and protons take place under the present conditions. The turnover numbers for the formation of NO₂- and NH₃ based on the amount of the cluster were 352 and 843, respectively, during 5 h. The saturation of NO₂- in water at about 3 h after starting the reduction of NO₂- demonstrates that NO₂- is the first reduction product of NO₃-. In fact, the reduction of NO₂- with [Mo-Fe]/GCE under the electrolysis Fig. 2. The reduction of NO₂⁻ (5.0 x 10^{-2} mol dm^{-3}) catalyzed by [Mo-Fe] (1.0 x 10^{-7} mol)/GCE under the electrolysis at -1.25 V vs. SCE in H₃PO₄-NaOH buffer (pH 10, 0.2 mol dm^{-3}). at -1.25 V ys. SCE in $\rm H_2O$ (pH 10) containing NaNO₂ (5.0 x 10⁻¹ mol dm⁻³) and $\rm H_3PO_4$ -NaOH (0.2 mol dm⁻³) produced NH₃ and H₂ catalytically with current efficiencies of 85.3 and 14.1%, respectively, during 3 h. When the reduction of NO₂- with the [Mo-Fe] modified glassy carbon disc of a ring-disc electrode with rotation 1000 r.p.m. was carried out at -1.25 V \underline{vs} . SCE in H₂O (pH 10), no detectable current flow was observed at the glassy carbon ring electrode on fixing the potential at a more negative value than +0.3 V \underline{vs} . SCE. An anodic current, however, began to flow at the ring electrode at a more positive potential than +0.3 V vs. SCE and increased on shifting the potential to more positive values. This electrochemical oxidation behavior is consistent with that of NH_2OH at a glassy carbon ring electrode in H_2O at pH 10. Thus, NH2OH should be an intermediate in the reduction of NO2- to NH3. The reduction of NO₂⁻ at -1.20 V <u>vs</u>. SCE affords NH₃ together with H₂, being similar to that at -1.25 V <u>vs</u>. SCE, while a small amount of N₂O as well as NH₃ is produced in the reduction conducted at -1.15 V <u>vs</u>. SCE. A further anodic shift of the electrode potential to -1.10 V conducted at -1.15 V vs. SCE. A further anodic shift of the electrode potential to -1.10 V vs. SCE results in a complete depression of the formation of NH₃, instead N₂O is formed as a reduction product. The alternation of the main product from NH₃ to N₂O in the reduction of NO₂- suggests that both reductions proceed via a common reaction intermediate. A most plausible intermediate for the reduction of NO₂- to NH₂OH is unstable NO- (or HNO), which is known to dimerize rapidly in organic solvents, giving N₂O₂²- (or H₂N₂O₂). The N₂O₂²- anion, however, easily undergoes decomposition in H₂O to give N₂O. The present N₂O evolution in the reduction of NO₂- may, therefore, arise from the preferential dimerization of NO- to N₂O₂²- rather than the reduction of NO- to NH₂OH owing to a decreasing ability of multielectron reductions caused by the anodic shift of the [Mo-Fel/GCE potential. electron reductions caused by the anodic shift of the [Mo-Fe]/GCE potential. Possible reduction pathways of NO_3^- with [Mo-Fe]/GCE may be expressed as Scheme 2. The rate-determining step may be the reduction of NO_3^- to NO_2^- , since the latter is accumulated to some extent in the reaction mixture (Fig. 2) and NH_2OH is not identified in the reaction products. On the other hand, when the reduction of $N\tilde{0}_2$ was conducted at -1.10 V vs. SCE, #### Scheme 2 the first product NO- dimerizes to $N_2O_2^{2-}$ before it is reduced to NH₂OH. The resulting the first product NO dimerizes to N202° before it is reduced to NH20H. The resulting $N_2O_2^{2-}$ anion easily undergoes decomposition in H20 to evolve N20. Biologically dissimilatory reduction of N02 has been suggested to produce N_2 via N_2O . Although no N_2 evolution has taken place in the present N03 and N02 reductions, the controlled potential electrolysis of an N_2O saturated aqueous solution (pH 10) with [Mo-Fe]/GCE at -1.25 V vs. SCE has evolved N_2 catalytically with a 50% current efficiency. Thus, the [Mo-Fe]/GCE can simulate the assimilatory and dissimilatory reductions of NO_3^- and NO_2^- . Moreover, the reduction pathways of NO_3^- presented in Scheme 2 are consistent with those proposed for the reductions of NO3 by assimilatory and dissimilatory reductases. ### **REFERENCES** - S. Kuwabata, Y. Hozumi, K. Tanaka, and T. Tanaka, Chem. Lett., 401-404 (1985); S. Kuwabata, K. Tanaka, and T. Tanaka, Inorg. Chem., 25, 1691-1697 (1986). K. Tanaka, M. Moriya, and T. Tanaka, Chem. Lett., 373-376 (1987); Isr. J. Chem., 28, 46-50 (1987)88); K. Tanaka, M. Moriya, S. Uezumi, and T. Tanaka, Inorg. Chem., 27, 100 (1987)81. 137-143 (1988). - 3. S. Kuwabata, S. Uezumi, K. Tanaka, and T. Tanaka, <u>J. Chem. Soc., Chem. Commun.</u>, 135-136 (1986); <u>Inorg. Chem.</u>, <u>25</u>, 3018-3022 (1986). - 4. For the CO₂ fixation coupled with NO₂ reductions catalyzed by [Fe₄S₄(SPh)₄]² under the electrolysis conditions, by the use of organic proton sources such as PhCoCH₃, PhC≡CH, and C₆H₁₀(0) in place of H₂O: K. Tanaka, R. Wakita, and T. Tanaka, Chem. Lett., 1951-1954 (1987); J. Am. Chem. Soc., 111, 2428-2433 (1989); K. Tanaka, H. Miyamoto, and T. Tanaka, Chem. Lett., 2033-2036 (1988).