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Abstract - A semiempirical procedure based upon measurements of 
solubility over a reduced temperature range and the use of a perturbation 
method with a hard-sphere reference fluid, is able to describe 
satisfactorily the thermodynamics of dissolution of nonpolar gases in 
water over all the temperature range and for gas pressures up to 50 MPa. 
The procedure can also be applied to systems constituted by anisotropic 
molecules, either sphericallizing the intermolecular potential or 
employing the interaction site model, The possibility of extending these 
ideas to deal with the dissolution of gases exhibiting larger 
intermolecular interactions with the solvent is explored. 

INTRODUCTION 

The study of the solubility of nonpolar gases in liquids has been the basis upon which many 
ideas about the Physical Chemistry of Solutions have been laid. The introduction of a 
nonpolar unreactive gas particle into a dense fluid involves a relatively small change in 
the interactions already prevailing in the liquid. It is scientifically relevant to inquire 
into the factors which determine the thermodynamic quantities characterizing this process. 
Also in many applied fields of Chemistry, Biochemistry, Chemical Technology and 
Geochemistry there is interest in the thermodynamic description of gas-liquid binary 
systems. On both accounts aqueous solutions of gases play a prominent role. 

The theoretical description of the thermodynamics of dissolution of gases in liquids over a 
wide range of values of the state variables (i-.~., temperature, pressure, densities) is a 
plausible goal due to progress in the Statistical Mechanics of dense fluids. It is possible 
to use models and develop calculation procedures which, in principle, are able to deal with 
any liquid solvent, thus eliminating the artificial, albeit practical, distinction between 
aqueous and nonaqueous solvents. 

I shall try to summarize in this work the features of a calculation procedure employed in 
our laboratory to describe the thermodynamics of dissolution of gases in liquids, and then 
discuss its advantages and its limitations. The method is capable of describing the 
behaviour over wide ranges of the thermodynamic variables and for systems with different 
types of molecular interactions. 

MODEL A N D  CALCULATION PROCEDURE 

The adopted model has been used by Ely in 1939 (ref. 1) to describe the thermodynamic 
features of the dissolution of gases in liquids. The dissolution of the gas molecules is 
represented by a two-step process, first a cavity large enough to host the solute molecule 
is made in the solvent and then the interactions between solvent and solute are switched on. 
In 1963 Pierotti (ref. 2 )  employed successfully the same model to calculate the 
thermodynamic properties of gases dissolved in aqueous and nonaqueous solvents around room 
temperature employing scaled particle theory. 

Using gas solubility data it is possible to determine Henry's constant, $(T); its 
logarithm is related to the difference gf standard chemical potential of the solute in the 
liquid solvent and in the gas phase, Ap2.  Thus for the dissolution process, 
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where p; is the solvent density, pief is the work of cavity formation (reference term) and 
p;tt is the contribution of the attractive interactions between solvent and solute. The 
dissolution process described by (1) is ideally suited to use a perturbation method in 
order to calculate its thermodynamic properties: the reference term corresponding to the 
dissolution of a hard-sphere solute, and the perturbation being the solute-solvent 
intermolecular interaction (essentially attractive Lennard-Jones). 

A completely rigorous calculation of properties of solutions with this procedure is limited 
because there are approximations inherent to the perturbative expansion (lambda-expansion) 
and to the equations used for the equivalent fluid (reference fluid) (ref, 3 ) .  Moreover, if 
employed to describe real systems the greatest problem is the fact that perturbation 
methods are extremely sensitive to the values of the molecular parameters (energy and size), 
being strongly affected by the usual uncertainty of these parameters. The terms in eq. (1) 
are given by (ref. 4 ) ,  

di + dz 
2 

p:ef = -RT ln(1-y) + ZT:~RT Sd2 (z)zzdd, ; z = 
0 

and 

where gy2(r) is the radial distribution function of the references fluid particles which 
surround a solute molecule, GT2 its value at contact, and ui2(r) is the perturbation of 

att . the solute-solvent intermolecular energy. Due to the limitations mentioned above, v 2  
restricted in eq. ( 3 )  to the first order contribution; hence the calculation procedure 
becomes semiempirical, but conditioned to the use of molecular parameters which may also 
account for other properties of the studied systems. The term pief is that corresponding to 
a hard-sphere equivalent fluid with the (number)density of the actual solvent. In (2) and 
( 3 )  we use the Percus-Yevick (PY) equations for the reference hard-sphere fluids (ref. 5 
and 6) ,  they provide the correct framework to calculate other thermodynamic properties and 
a sound basis to relate these with molecular parameters. Furthermore, using the PY 
approximation it is possible to extend the treatment to systems with anisotropic molecules. 

The equivalent hard-sphere diameters are given to a first approximation by (ref. 3 ) ,  

is 

- di  = $  

where u?.(r) is 
the reference f 

11 

i i  ( r )  

kT 

UO 

1 - exp ( -  ) I  dr ( 4 )  

the soft repulsive unperturbed intermolecular potential which is replaced in 

uid by an equivalent hard-sphere potential. This equation was used only 
when u? (r) could be represented by the Lennard-Jones equation, otherwise d. was an ii -1 
adjustable parameter, i.2. for aqueous systems. The PY expressions for (2)  and (3)  (ref. 6) 
indicate that A p 2  depends on the packing fraction of the solvent y = rrp d /6, on the ratio 
of solute to solvent diameters and on the Lennard-Jones parameters. 

m * 3  
1 

AQUEOUS SOLUTIONS OF NONPOLAR GASES 

In order to describe the dissolution of gases in water up to its critical point, it is 
necessary to make a thorough and careful analysis of the solubility data. The gas 
solubility, expressed by the solute's mole fraction 5, and its fugacity, r,, are related to 
Henry's constant by, 

H dP + In f2 f 2  In - = In - 
XP 1 RT 

(5) 

m where V2 is the solute partial molar volume at infinite dilution and f2 H the solute activity 

coefficient. The last two terms in eq. ( 5 )  give corrections to the solute chemical potential 
due to an increase in pressure (Poynting correction) and to solute-solute interactions 
respectively. When the temperature of the dilute solution is close to the critical 
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temperature of the solvent (T 
tends to + m at T The PY perturbation method affords a means of calculating self- 
consistently these two corrections (ref. 7), and hence to determine ki from gas 
solubilities, pressure and temperature. 

Another point worth remarking is that the PY equation provides ammeans to calculate other 
thermodynamic quantities of dissolution by differentiation of Ap2. The polynomials which 
are normally employed to represent the temperature dependence of ln(%/p ) ,  when directly 
differentiated do not give the right angwer over a wide temperature range (ref. 6). Figure 
1 compares the calorimetric data for AC of Ar in water (ref. 8) with values obtained by 
differentiation of two polynomials in temperature which are often employed to represent the 
% data, These polynomials may be expressed by, 

) ,  both contributions become very important, actually V; lc 
lc' 

m e  

P,2 

h T = B  G - - ) + x i -  Ai 
In ( 

P T TIC Ti 

It is clear that the values of AC" 
calorimetric data, while those obtained by differentiation of eq. (6) fail dramatically 
above 450 K, even after proper thermodynamic correction. 

obtained with the PY equations agree with the 
P,2 

Fig. 1. AC" 

Curves obtained by differentiation of: (a) 
eq. (6), (b) eq. (6) with B=O.  a :  correc- 
tion to isobaric conditions. Calculated 
with PY procedure; -: vapour pressure, 
-*-.: 17.2 MPa. Calorimetric data: 0 , 

(Ar,aq) against temperature. 
P,2 

In the calculation procedure applied to aqueous solutions, we use d 
temperatures and values for E~~ and u = d taken from the 1iteratL.e. With the PY 
expression for eq. (l), E~~ = (E 

H2, N2, 02, CH and C H in water at 298 K; it was found that (cll/k) = 217 K. cll is the 4 2 6  
Lennard-Jones water-water intermolecular energy, L,s ,  when hydrogen bonding and dipole- 
dipole contributions are eliminated. The value of cll/k calculated from cross-term second 
virial coefficient data for binary gaseous mixtures of water and nonpolar gases was 220f10 K 
(ref. 9), which agrees very well with that obtained from gas solubility. Henry's constants 
for these gases are correctly reproduced over all the temperature range if d2 is assumed to 
decrease linearly with temperature (ref. 6). 

I$ order to judge the overall perforgance of this method it is necessary to calculate from 
% the solute distribution factor, $ = Lim(y/z) (i.2. mole fraction ratio of solute in the 

vapour to that in the liquid). These two quantities are related by lc+ = KD@,9,, where @2 is 

= 0.27 nm at all 

2 -2 2 
12 22 /E ) was calculated from the solubilities of inert gases, 

m m m *  m x - t o  
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* 
the fugacity coefficient of the solute at infinite dilution in the gas phase and 
solvent vapour pressure. Japas and Levelt Sengers (ref. 10) have shown that the relation, 

is the 

must be obeyed by liquid-vapour equilibrium close to Tlc. Figure 2 illustrates the 
performance of the method applied iteratively to the system N -H20 studied up to 636 K 
(ref, 2) .  It is seen that the procedure is self-consistezt an$ complies with eq. ( 7 ) ,  
T.ln(K ) extrapolates to the critical density of water p only if the Poynting effect and -D lc 
the activity coefficient contributions are taken into account. 

A s  consecuence of these observations the use of a simplified procedure to describe the 
dissolution process has been suggested. This couples experimental solubility measuremenLs 
over a reduced temperature range (where good experimental precision is attained) with I& 
obtained by extrapolation with eq. ( 7 )  for the higher temperatures. The PY perturbation 
method is then used to obtain the temperature dependence of d over all the temperature 
range, this is the only adjustable parameter upon which the p?operties of the solutions 
depend. The performance of this procedure may be assessed with data for C H -H 0 (ref, 11 
and 12). A s  shown in Fig. 3 the agreement is good, especially considering the restricted 

2 4  2 

4 -  

c 
Y 

Fig. 2 .  T In(<) against solvent density 
for N2 dissolved in water. Experimental 
points with full correction, . ; without 
correction for activity coefficients, . 

temperature range ( 6 0  K) over which data for the solubility of ethylene in water exist. This 
limited experimental information introduces uncertainty in the precise dependence of d2 upon 
temperature (the hatched areas in Fig. 3 cover this ambiguity). 

T/K 
Fig. 3 .  C H 

Curves and hatched areas: calculated with PY procedure 
R: temperature range of available solubility data, 

dissolved in H20.  0 :  ACm and w :  V;. 
2 4  P,2 
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What can be said of the use of a hard-sphere reference fluid to describe aqueous solutions 
where the solvent exhibits anomalous behaviour due to the strong positional and 
orientational correlation existing among neighbouring H 0 molecules? It is convenient to 2 compare the PY perturbation method to a semiempirical method proposed by Pratt and Chandler 
(PC) (ref. 4) which uses 4 water as the reference fluid. In order to obtain go2(r), 
which is necessary to calculate Gy2(z) in eq. ( Z ) ,  Pratt and Chandler employed tke 
Ornstein-Zernike equation for the infinitely dilute solution which relates gy2(r) to the 
radial distribution function of pure water; 

where cy2(r) is the solvent-solute direct correlation function, The radial distribution 
function of water, gI1(r), is obtained from X-ray or neutron scattering experiments in pure 
water. Thus g;,(r) retains all the features of water structure, For dilute solutions of 
nonpolar gases this PC perturbation method yields very similar results to that of PY (ref. 
13). Figure 4 is a plot of the radial distribution function (go ) of solvent surrounding 
a hard-sphere solute of 0.4 nm diameter when the solvent is either water or a hard-sphere 
equivalent fluid. It is seen that for the hard-sphere solute at infinite dilution the first 
layers of solvent look the same whether it is H20 or a hard-sphere fluid with the same 
packing fraction, the number of nearest neighbour solvent particles surrounding a solute 
particle, is the same in both fluids, Since the nonpolar solute-solvent interactions are 
weak and short-ranged, the contribution of the nearest neighbours molecules is the only 
significant one. 

12 

t 

---- 

I 1 1 
1 2 

r10.335 nm 
Fig. 4. Radial distribution function of 
solvent surrounding a hard-sphere of 0.4 nm 
at infinite dilution: ---: PY; -: PC. 

ANISOTROPIC NONPOLAR SOLVENT MOLECULES 

The calculation procedure outlined above may seem better suited to deal with nonpolar 
solvents because their molecules only interact through dispersive forcgs. However, this 
proved not to be the case, Table 1 gives the difference between the Ap2/RT of Ar and those 
of Kr, Xe and CH4 in benzene. The effects of an increase in solute diameter and in E~~ is 
not correctly predicted by the hard-sphere PY calculation procedure. Since for nonpolar 
gases like Ar or CH4, the molecules of typical nonpolar solvents such as CC14, C H 
liquid alkanes, appear strongly non-spherical, it was considered important to inquire if 
the disagreement was due to the anisotropy of the solvent molecule. 

or 
6 6  

Sphericallized intermolecular potentials 
One way of extending the calculation procedure described above to these solutions taking 
into account molecular anisotropy, is to sphericallize the intermolecular potentials (ref. 
14). It was observed that the contribution of the anisotropic molecules to the effective 
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minimum energy (E  ) of the sphericallized potentials, depends on the relative sizes of 
the two interacting molecules. In other words, the value of E~~ used to calculate E~~~ = 

E~~ = ( E ~ ~  E ~ ~ ) ~ ~ ~  which is contained in ui2(r), will change with solute size. 
This is illustrated in Fig. 5 for two different sphericallization procedures applied to the 
interactions of a diatomic homonuclear molecule with a spherical particle. 

min 

(Ar ) AuY(X) 
TABLE 1. - - in benzene at 298 K. 

RT RT 

X PY SPh ISM Exp . 
0.255 0.557 0.711 0.857 

Kr 0,704 --- 1.282 1,136 

Xe 0.837 1,881 2.418 2.582 

CH4 

Table 1 also reports the results of the sphericallization (Sph) of intermolecular potential 
employing the median criterion, it is clear that sphericallization partially resolves the 
discrepancy observed with the hard-sphere PY procedure. Sphericallization of the 
intermolecular potentials is a practical and convenient solution, but limited to systems 
with molecules which are not very anisotropic. 

Fig. 5.  E *  = ( E ~ ~ / ~ E ~ )  against J-* = 2 1  
(ds+d2) for interaction of a dumbell 
with site parameters E and d and 
distance J- between sitzs and f spherical 

2 '  Lennard-Jones molecule of diameter d 
Sphericallization procedure: -, RAM; 
--- , median, 

The interaction-site method 
In order to improve upon the result of sphericallization, we have used an interaction site 
model (ISM) (ref. 15) which represents molecules by a succession of spherical sites, thus 
it was possible to deal fairly rigorously with anisotropic molecules under the PY 
approximation. We have studied C6H6 and ;-alkanes as solvents, these molecules were 
considered formed by one type of site only. The energy and size site parameters were 
obtained from the solvent's vapour pressure, because when the molecular parameters of the 
solute are the same as those of the solvent, eq. (1) gives the "chemical potential of 
dissolution" of a solvent molecule in the liquid solvent itself. Consequently, in eq. (1) 

<(TI is replaced by f* the fugacity of the pure solvent, and the perturbation procedure 
may be used to calculate the solvent site parameters. For ;-butane over a temperature 
interval of 75 K, the site energy was 102.1i.5 K and the diameter 0.392 nm, values which 
were used for the other n-alkanes. For C H the site energy was 84.3i.2.2 K and its 6 6  diameter 0.372 nm for a temperature interval of 150 K. Details of the ISM calculation will 
be reported elsewhere (ref. 16).  

With the values of the interaction site energy ( E  ) of the solvent, binary systems were 
studied. Table 1 reports the change of Ay /RT when going from Ar to Xe dissolved in benzene 

-1' 

m 

2 
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as calculated with the ISM, the predicted changes of solubility are close to the 
experimental values, Therefore a significant improvement is obtained using the PY-ISM 
method, 

It is more difficult to calculate the indiviiual Apm values without adjusting any parameter. 
The values of ES/k necessary to fit the ln(s/pe) data were calculated for inert gases and 
methane in various solvents at 298 K. For benzene E /k was 89 i3  K and for pentane, hexane 
and heptane, E /k = 9124 K ,  the uncertainties in E imply and uncertainty of 8 to 15% in the 
predicted solufilities. 

2 

SOLUTES WITH STRONGER INTERACTIONS WITH SOLVENTS 

We turn now to consider aqueous binary systems where the solutes are dipolar or have some 
degree of hydrogen bonding to H20, in order to find out if the perturbation method may be 
extended to deal with substanceshaving somewhat stronger interactions with the solvent. 
For this analysis, molecules were considered spherical, In Table 2 various gaseous solutes 
are considered and the values of the parameters which fit the (low temperature) solubility 
data ( s )  are compared to those obtained from pure gaseous solutes (8) and from cross- 
second virial coefficients of the gases and water vapour (v) (ref. 17).  For C O ,  C02 and 
N 0 ,  the interaction energy ( ~ ~ ~ / k )  obtained was greater than 217  K because hydrogen 
bonding contributes to a certam extent, but it had the same value for binary mixtures in 
gas and liquid phases. 

2 

Table 2 .  Molecular Parameters for Binary Aqueous Mixtures 

E22‘k 2’  -2 d u2  E l l ’ k  
Solute gas 

K nm debye K 

co 100 0.376 0.11 g 
100 0.376 -- 266 v 
100 0.353 -- 266 s 

189 0.459 0.17 g 
385 v 
385 s 

189 0.459 -- 
189 0.450 -- 

N2° 

189 
189 
184 

CH3F 207 
207 

C H 3 C 1  318 
318 
318 

0.449 
0.449 
0.427 

0.336 
0.343 

0.344 
0.344 
0.343 

g 
385 v 
385 s 

-- 
-- 
-- 

1.82 g 

1.87 g 

-- 302 s 

1.87 217 v -- 217  s 

For dipolar gases it is possible to use a Lennard-Jones intermolecular potential to 
represent the interactions if the molecular parameters are redefined in terms of dipole 
moments and polarizabilities (ref. 5) .  In this way the PY hard-sphere formalism may be 
maintained. The results in Table 2 for FCH3 and C1CH3 show that solubilities may be 
correctly predicted if these solutes are considered nonpolar (L.E. if E~~ is that 
corresponding only to dispersive forces), otherwise predicted solubilities are much larger 
than the experimental ones. It is as if the collective effect of solvent dipoles in the 
liquid phase partially cancelled the contribution of the solvent electric field on the 
solute particle, 

CONCLUSIONS 

The dependence of the properties of dilute solutions of gases in liquids on the state 
variables and on the molecular parameters of the solutes is correctly represented by the 
perturbation procedure used. However, in spite of the general success of the method, the 

individual terms of p2 ref and p;tt are much larger than A u i  and have opposite sign, so that 
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an important part of their cgntributions cancels out. This is the reason for the extreme 
sensitivity of calculated Ap2 upon the solute’s energy parameter. It must be considered that 
the intermolecular parameters for inert gases are known within 1% (ref. 18); furthermore, to 
a certain extent they are property dependent (ref. 5). So that in spite of the good 
description afforded by the perturbation method, the uncertainty in the molecular parameters 
involves errors which are much larger than the experimental precision of solubility data. A s  
an example, for CH 

implies a 35% uncertainty in $. Since there is no way of knowing the molecular parameters 
with the level of precision required.by the experimental solubility data, it is convenient 
to use the method semiempirically because then the properties of the infinitely dilute 
solution may be predicted satisfactorily with minor adjustments of the molecular parameters. 

The extensions of the perturbation procedure to systems constituted by anisotropic 
molecules or having stronger intermolecular interactions, show that also for these systems 
the PY perturbation equations give the correct dependence of thermodynamic quantities on 
the state variables and on the molecular parameters. However also for these systems to get 
good agreement, E 

the values usually quoted for EZ2/k are 157t10 K, this uncertainty 4 

and the temperature dependence of d2 should be adjusted empirically. 
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