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Abstract - During the last twenty years diffusion coefficients have been primarily 
measured by light scattering and NMR techniques. 
Optical interferometric techniques, such as those of Gouy or Rayleigh (ref. 1). allowing 
direct observation of the time evolution of a diffusing boundary are not very popular at 
present. However, they are the only ones that give a reasonably accurate measurement of 
the set of (n-U2 diffusion coefficients describing the brownian transport process in a 
multicomponent system. 
Experimental data on a variety of ternary systems indicate some aspects of diffusion in 
multicomponent systems: 
(a) The thermodynamic stability conditions: 
(i) D l l + D z  > O  and (ii) Dll% - D12Q1 2 0 
have been verified experimentally and the relevant contribution of cross terms, which 
cannot be ignored in describing the transport process, has been pointed out. Furthermore, 
it was also experimentally verified that on approaching a critical mixing point the 
determinant (ii) approaches zero. 
@) The main terms need not be necessarily positive: one of them may be negative. 
(c) The presence of a binding equilibrium between solutes 1 and 2 affects the 
experimentally measured values of the four diffusion coefficients. 
The equilibrium constant calculated from the experimental Dg's leads to values in very 
good agreement with those provided by direct thermodynamic techniques. 
The binding equilibrium promotes conditions leading to the transport of one component 
against its own concentration gradient, or its own chemical potential gradient (passive 
transport). 
(d) Diffusion measurements in three component systems provide a quantitative 
verification of the effect of the fluid-dynamics equations on the gravitational stability of 
diffusion boundaries or double diffusive convection, which is a convective transport 
process of great interest in several fields of pure and applied science. 

INTRODUCTION 

The aim of this paper is to illustrate briefly some results of the research on brownian 
diffusion in ternary systems our group has been conducting at the Chemistry 
Department of University Federico I1 in Naples for several years. 
Its main purpose has been the understanding of the phenomenological role the 
presence of one component has on the transport process of the others. 
The phenomenological diffusion theory proposed by Onsager (ref. 2) describes the 
transport process in an n-component system by a set of n generalized Ficks equations: 

n 
(1) Ji = - C I)i, grad Cj 

1 
L 

However, neither the n concentration gradients nor the n flows are all independent. 
The relation among concentrations is: 

n -  

1 
(2) 2 V i C i  = 1 

In the absence of pressure gradients, this leads to: 

where Qi is the partial molar volume of component i ,  
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L 2 Diffusion boundazy with 
refractive index gradient 

Gouy Fringes 

Fig, 1. Scheme of the Gouy Diffusiometer showing the formation cf interference fringes: S is 
thelight source. L1 and are two lenses that give the wurce image in F. Light passing through 
the diffusion boundary , where a vertical gradient of refractive index is present, deviates to form the 
source image at different levels in F. Light deviation Y, in F. is given by Y = ab(dn/dx), where dn/dx 
is the refractive index gradient at level x into the dflusion cell. Light wave fronts R and P, passing 
through the diffusion boundary at different levels, but joining in F. have different optical 
paths and interfere on the focal plane F to form a fringe pattern. 

The relation between flows arises from the continuity law and depends on the reference 
frame chosen to describe the transport process. 
Experimental free diffusion measurements choose a uolurne-jked reference frame 
defined by the following relation(ref. 3): 

P being the local velocity of a volume element of the solution I 
Sometimes it is preferable to describe the flow process in terms of the diffusional 
velocity of each component ( u  = Ji/Ci) with respect to that of component n, generally 
assumed as the solvent: 

(4) J i  = Ci(vi - un)  

where Ji are the flows in the fured-solvent reference frame, Jn being zero by definition. 
A set of n-1 independent equations with a set of (n-112 independent coefficients, is 
obtained by introducing eq.(2) into eqs.(l) : 

n -  1 

1 
( 5 )  J i  = - C Dij  grad Cj 

Onsager suggested the following arbitrary relations to define the n2 coefficients D4 : 

( 6 )  C QjCj 0 (i = 1, 2, , , I n) 
j 

eq,( 6) includes the relation: 

( 7 )  = o  

A further reduction of independent coefficients arises from the presence of Onsager 
reciprocity relations. However, their use requires knowledge of the thermodynamic 
properties of the solution, and this is very limited in multicomponent systems. 
Experimental techniques, such as the Gouy interferometer (ref. 1) used in our research 
(see Fig. 1). give the (n-112 diffusion coefficients of a n-component system, at one mean 
concentration, from the analysis of the diffusion patterns of at least (n-1) diffusion runs 
with varying concentration differences of their components through the diffusion 
boundary. This technique has so far been employed only in the investigation of three 
component systems. 

CHOICE OF COMPONENT n (the solvent) 

In a 3-component system, equations (5) reduce to: 

( 8 )  J1 = - D1lgradC1 - Dl2gradC2 
( 8 )  J2 = - DzlgradC1 - D22gradC2 

and four diffusion coefficients can be measured experimentally. 
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The flow of component 3 is obtained from equation (3): 

However, it must be pointed out that the choice of component 3. commonly defined as 
the solvent, is arbitrary. In general it is the most abundant or that weighed last in 
preparing solutions for diffusion measurements. Equations (8) can be written in terms 
of grad C1 and grad C3 or grad C2 and grad C3, as well. 
Depending on the choice of the concentration differences ( ACi and ACj) between 
bottom and top solutions used in elaborating the experimental results of diffusion runs, 
three sets of four diffusion coefficients are obtained. 
Let us define (Dij)k the diffusion coefficient of component i under the concentration 
gradient of component j in a ternary system where component k has been chosen as 
solvent (where not necessary index k is omitted). The following transform expressions 
correlate the three sets of diffusion coefficients (ref. 3): 

From eqs.(lOI it can be seen that the determinant and the trace of matrices (DIk are 
invariants. 

Although the transport process is a single one and independent of the choice of 
component 3. this choice may help to a better understanding of the diffusion process. 
An example is given by the flow equations of the system: 

Sucrose (0.097 W(1) - Sodium Chloride (0.291 W(2) - Water (53.93 W(3) 

at 25°C (ref. 4) (in eq. (1 1) and (12) diffusion coefficients units are in 105 cm2 s-l): 

(1 1) J1 = -0.487 grad C1 + 0.002 gradQ (component k + water) 
(1  1) J2 = -0.087 grad C1 - 1.475 grad C2 
(12) J1 = -0.512 grad C1 - 0.002 grad% (component k + NaC1) 
(12) J3 = -10.92 grad C1 - 1.450 grad C3 

As eqs. (11) show, the sucrose(1) - NaCl(2) - water(3=k) system has small cross 
diffusion coefficients, one of them is almost zero. However, things are quite different 
when NaCl is chosen as component k. The new (Dij)k set shows that the water cross 
diffusion coefficient is one order of magnitude larger than its main term. This indicates 
that water flows much faster in the sucrose concentration gradient than in its own, and 
that it can even flow against its own concentration gradient within the following 
concentration gradients: 

The water behaviour, although hidden in eqs.(l l), is clearly shown only by eqs. (12). 
In general, the cross diffusion coefficients cannot be ignored in describing the 
transport process. Large and positive Dij values have been observed in systems where 
the solutes tend to salt-out (ref. 4). Large negative cross-term diffusion coefficients can 
occur in systems with large attractive interactions between solutes (ref. 4-6). The data 
shown in Table 1 confirm this statment. 

grad C3 < -7.53 grad C1 > 0 
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Table 1 collects the ( DiJ)k for the Acetic acid- Chloroform- Water system at various 
compositions, the data for all three choices of component k are given. It can be seen 
that if components i and j are water and chloroform (salting out effect) the cross terms 
are positive; if they are water and acetic acid (attractive interactions), the cross terms 
are negative. 

TABLE 1. Diffusion Coefficient for the System: Acetic Acid-Chloroform-Water at 25OC 
(ref. 7) and various compositions. Xi = mol fraction of component i. D units 105 cm2 s-l 

Component i + Acetic Acid; Comp. j + Chloroform; Comp. k + Water 
X i  XI (Ddk (Dij)k (Dji)k (Djj)k 

0.8803 0.0496 1.296 0.011 -0.232 0.933 
0.781 1 0.0892 1.550 0.520 -0.548 0.367 
0.6924 0.1288 1.547 0.545 -0.624 0.230 
0.5405 0.1897 1.814 1.065 -0.939 - 0.334 
0.4199 0.2400 1.844 1.153 -1.095 - 0.596 

Component i + Water; Comp. j + Chloroform; Comp. k + Acetic Acid. 
X i  XI (Ddk (Dij)k (Dji)k (Djj)k 

0.0701 0.0496 0.970 0.130 0.073 1.259 
0.1297 0.0892 0.782 0.194 0.172 1.135 
0.1788 0.1288 0.672 0.236 0.196 1.105 
0.2698 0.1897 0.498 0.321 0.295 0.983 
0.3401 0.2400 0.309 0.368 0.344 0.939 

Component i + Water; Comp. j + Acetic Acid; Comp. k + Chloroform 
xi x j  (Dii)k (Dij)k (Dji)k (Djjlk 

0.0701 0.8803 0.941 -0.093 -0.002 1.288 
0.1297 0.7811 0.738 -0.138 -0,117 1.178 

' 0.1788 0.6924 0.619 -0.168 -0.122 1.158 
0.2698 0.5405 0.426 -0.229 -0.239 1.055 
0.3401 0.4199 0.226 -0.262 -0.258 1.022 

THERMODYNAMIC STABILITY CONDITIONS 

Thermodynamic stability is ensured by the condition that any perturbation promotes an 
entropy absorption; namely, the entropy at  equilibrium is a maximum; on the other 
hand, any spontaneous process occurs with a positive definite entropy production. 
For isothermal diffusion in an n-component system this condition is written as: 

(13) T?j2S = - z 6 p i 6 n i  S 0 where 6 p i = x % b n k  

&pi being the perturbation of chemical potential of component i, and 6nk the possible 
arbitrary fluctuation in the number of moles of component k. 
From eq.(13) one obtains the stability conditions with respect to diffusion: 

i k a n k  

The conditions for the quadratic expression (14) to be positive or zero are that all pii 
must be positive and all the other minors, bOth odd and even order, constructed on the 
principal diagonal of the determinant of Pik must be positive or zero. This condition is 
met by making the trace of the matrix of diffusion coefficients positive and the 
determinant positive or zero. In a ternary system: 
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The equality sign corresponds to the boundary between stable (or metastable) and 
unstable systems. In the phase diagram this boundary is known as the spinodal curve. 
Any solution whose composition lies within this curve is unstable and concentration 
fluctuations always promote a phase separation. 
The equality sign was confirmed in a set of experimental diffusion runs on the water- 
chloroform- acetic acid system (ref. 7) taken at  various compositions approaching the 
plait-point, where the phase separation curve joins the spinodal curve; the results are 
shown in Fig. 2. 
Conditions (15) do not require both main diffusion terms to be positive. Diffusion 
coefficients measured in a volume- fured reference frame may give a negative main term. 
This was found in the system shown in Fig. 2. Table 1 collects the set of (Dij)k obtained 
choosing each component as component k in turn. 
It can be seen that when water is chosen the chloroform main diffusion coefficient is 
negative in a wide range of compositions approaching the plait- point. 

CHaCOOH 

0.2 0 -4 0.6 0.8 

I Phase Diagram showing 
the compositions of 

diffusion runs 
0.0 

Fig. 2. 
Fig. 2. System Acetic acid - Chloroform - Water at 25OC (ref. 7): ID I Determinant 

of Diffusion Coefficients ; X 3 mole fraction of acetic acid 

DIFFUSION IN THE PRESENCE OF A BINDING EQUILIBRIUM 

While the size and sign of diffusion coefficients for systems with high solute 
concentrations are only understood in qualitative terms at present, a more detailed 
interpretation of data is possible for dilute solutions in which significant fractions of 
solute monomer species have combined to form associated species. 
Let us consider a solution of monomer species A (1) and B (2) in equilibrium with a 
complex AE3 (3) according to the equation: 
(16) A + B = A B  
This is a quaternary system and diffusion eqs.(5) require nine coefficients, Dy* (i, j = 1, 
2, 3). However, if we are dealing with a dilute solution of both A and B, the cross 
diffusion terms are expected to be small as compared to the main terms, and they can 
reasonably be ignored in the flow equations (5). 
Furthermore, in the presence of a fast equilibrium, the mass conservation law: 

(17)  C1 = C1* + C3*; C2 = C2* + C3*; J1 = J1* + J3*; J2 = Jz* + J3* 
(where Ci and Ji are the stoichiometric concentration and flow of component i, i = 1, 2 ,  
and Cj* and Jj* are the concentration and flow of the actual species j ,  j = 1, 2, 3) and 
the mass action law: 

(18) K ,  = c3* / (  C1* C2*) 

impose a restriction between concentrations and flows. 
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Because of eqs.(l7) and (18) this system reduces to a ternary one having only four 
measurable diffusion coefficients which are related to the actual diffusion coefficients 
Dii* by the following expressions: 

(19d) 
where: 

(20) 

Eqs. (19) are a set of four equations allowing the three Djj* and Kc a t  each 
concentration to be computed from the experimental D k ,  
Eqs. (1 9-20) were verified for (a) a-cyclodextrin-(Llphenyl alanine- water (ref. 8.9) and 
(b) a-cyclodextrin-(D,L)norleucine-water (ref. 10) at 25°C and various amino acid 
concentrations. The K, obtained from eqs.(19-20) was in very good agreement with that 
measured calorimetrically. Table 2 collects the diffusion data for (a) and (b) at one 
concentration and the average K, from the diffusion and the calorimetry data (ref. 8-10). 

D22 = (1/2){(D22* + D33*) + (D22* - D33*)[1 + KJC2 - ClII R] 

-1 2 
R = ( 1  1 + K, (C2-C1)] + 4K&) 

TABLE 2. Diffusion data for (a) a- cyclodextrin(1) - (L)phenyl alanine(2) - water 
and (b) a-cyclodextrinll) - (D,L)norleucine(2) - water a t  25°C (ref. 8-10): 

(a) C1 = 0.0200 mol/L, C2 = 0.1000 mol/L, K ,  = 10.5 L/mol, G a l  = 13.6 Kg/mol* 
(b) C1 = 0.0198 mol/L, C2 = 0.0602 mol/L. K, = 49 L/mol, q a l  = 46 Kg/mol* 
* In dilute aqueous solution MOLAR and M O W ,  equilibrium constants do not differ appreciably 

(a) 3.157 0.000 -1.630 6.332 
(b) 3.142 -0.003 -2.178 6.270 

3.157 6.510 3.157 
3.163 6.432 3.128 

The inclusion equilibrium drastically affects the value of the cross diffusion term 
responsible for aminoacid (A) transport under the concentration gradient of 
cyclodextrin (CD). 
As can be seen from eq.(l9b), the near equality of Dll* and D33* is responsible for the 
very small cross-term diffusion coefficient D12, 
The crow-term Dzl tends to be large and negative because the diffusion coefficient D22* 
of the faster moving A is much larger than D33* for the CD-A complexes. In this case, if 
there is a CD gradient and no gradient of A, the negative D21 causes A to move uphill 
towards the higher concentration of CD. This is because a higher concentration of CD 
means a lower concentration of unbounded A .  
The transport of one component due to the concentration gradient of the other 
(passive transport) bears some similarity to the active transport that plays a substantial 
role in biological membrane processes. 
Passive transport may also be of interest in membrane processes, the presence of cross 
terms can in fact lead to conditions for which one component diffuses against its own 
concentration gradient or even its chemical potential gradient, under the driving force 
of the other one. 
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GRAVITATIONAL INSTABILITIES i IN FREE DIFFUSION BOUNDARIES 

In recent years, there has been a great interest in double dtJjiusiue convection, i.e. the 
convective motions which can arise in diffusive layers even if the top liquid system has a 
lower density than the bottom one. This phenomenon may appear in systems where at 
least two independent driving forces promote the transport process. Thus, it may 
appear in binary solutions when a temperature and a concentration gradient are 
present, or in isothermal ternary solutions in the presence of concentration gradients 
of two components (ref. 11). 
An example is the heat and salt diffusion that gives rise to fingering or layering in 
oceans. Fig. 3 shows the temperature and salt concentration gradient conditions that 
may promote the growth of two different convective mechanisms in salty water. 
Other examples include unwanted convection in lakes and solar ponds, rollover in 
liquid natural gas tanks, geology (crystallization and  magma chamber processes), 
geophysics (mantle convection and vulcanism). astrophysics (inside stars a t  least 4 
components may be involved in the process: angular momentum, heat, magnetic field, 
helium / hydrogen composition), metallurgy (morphology and crystallization). 

T 

T 

I 

A 

T 

I I 
B Csalt 

Fig. 3. Convection in sea water due to temperature and salt concentration gradients: 
I. isodensimetric line. A. Fingers growth. B. Formation of convection cells 
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Fig. 4. Qualitative graph showing the density gradients through a diffusion boundary for various 
AC2/ AC1 conditions. B: graph showing the average composition of a set of diffusion runs, the 
concentration dffferences between bottom and top solutions, and the fields of stable and unstable 
boundaries. 1- convection at the borders of the boundary (layerfng 1. 2 - stable boundary. 3.4 - 
convection at the center of the boundary Lftnsers ) with no density inversion inside the boundary due 
to diffusion. 5 - density inversion at the center of the boundary due to diffusion. I - isodensimetric line. 

Free diffusion experiments can be performed in well-controlled conditions and have 
provided an  accurate way of testing the fluid-dynamics theories concerned (ref. 4,12- 14). 
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The profile of density (p) gradient through the diffusion boundary is given by the sum of 
two gauss functions (ref.15). Its shape depends on  the AC1 and AC2 concentration 
differences of components 1 and 2 across the diffusion boundary, and on the diffusion 
coefficients. Two different kinds of instabilities were observed in free diffusion 
boundaries: 
(a) A dynamic instability arising at the center of the boundary, even in the absence of 
density inversions due to the diffusion process [Fig. 4 (3, 411, for: 

(2 1) (22 p/2x2)(l/x) I 0  

In this case convection tends to destroy the boundary and the process is similar to the 
fingering in sea water (Fig. 3 A). 
(b) A static instability, namely a density inversion, at the borders of the boundary, as 
shown in Fig. 4(1). In this case convection at the borders of the boundary promotes its 
apparent overstabilization and the diffusion boundary keeps itself sharp and narrow 
much longer than expected from the diffusion experiment (ref. 16). This process is 
similar to the layering effect in sea water, shown in Fig. 3 B. 
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