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Abstract - Continuous thermodynamics has been recently
developed and applied to the liquid-liquid equilibrium of
polydispersed polymer solutions, It uses the continuous
distribution function directly in the thermodynamic equa-
tions to achieve a concise and convenient treatment of poly-
dispersed systems, This paper presents the application of
continuous thermodynamics to successive polymer fractiona-
tion procedures based on solubility differences. The method
is then applied to describe Baker-Wwilliams column frac-
tionation, Lastly, it is used to model continuous polymer
fractionation that splits the polymer into two fractions
that can be fractionated again.

INTRODUCTION

Fractionation is one of the most important procedures of polymer
characterization, From the thermodynamic point of view, it is the
successive establishing of liquid-liquid equilibria for suitable
polymer solutions. Schulz (refs, 1,2) was the first to present a mathe-
matical treatment of successive fractionation experiments, Later Tung
(ref, 3), Koningsveld and Staverman (ref. 4), Kamide et al. (refs. 5-8)
simulated a number of successive fractionation processes. In all these
papers, pseudocomponents were used to describe polymer polydispersity.

In recent years, continuous thermodynamics has been developed (refs. 9,10)
and has proved to be the most convenient method for treating the poly-
dispersity of many industrially important mixtures, It has been applied to
vapor-liquid equilibrium, especially of complex hydrocarbon systems (refs.
11-13), to liquid-liquid equilibrium, especially of polymer solutions
(refs, 14-16) and of polymer blends (ref., 17), and to stability considera-
tions (refs. 18,19), In continuous thermodynamics, the distribution func-
tions describing polydispersity are directly used without arbitrary
splitting into pseudocomponents., In this paper, continuous thermodynamics
is applied to successive polymer fractionation, Baker-wWilliams column
fractionation, and continuous polymer fractionation.

LiQUID-LIQUID EQUILIBRIUM

A solution of a solvent A and a polydispersed polymer B is considered., The
individual species of polymer B are identified by their segment number, r,
which is defined as the ratio of the hard-core volume of the species to
that of an arbitrarily chosen standard segment, The essence of continuous
thermodynamics consists in considering r as a continuously variable
quantity. The composition of the polymer is described by the distribution
function W(r), defined by the statement that W(r)dr gives the fraction of
all segments from those species with segment numbers between r and r + dr.
If ro is the lowest rO the highest occurring segment number, the normaliza-
tion condition reads
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/W(r) dr = 1 ; where/ represents / . (1)
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In continuous thermodynamics the condition for equilibrium between two
phases’ and ” as expressed by the chemical potentials is written

/

Fa =/"2 (2)
Halr) = fg(r) (3)

Eg. (3) is valid for all segment numbers from r
potentials may be written as follows

0 to ro. The chemical

r

M =/AZ(T) + RT[ln (1 -¥) » 1 = FA] + 1y RT 1n?A (4)

/uB(r) =/U*B,O(F’T) + RT [ln\yW(r) + 1 - E:}-t- r RT ln?_”B(r) (3)

r

The first term is the reference chemical potential, the second term is the
well-known Flory-Huggins contribution (withy = 0), and the last term
describes the deviation from such a Flory-Huggins mixture. The quantities

52 andZFB(r), named segment molar activity coefficients, are introduced
for this purpose, and in the general case they depend on T,y , and W(r).

is the overall segment fraction, and T is the number-average segment
number for the phase considered, defined by

i:!‘___%..'.l; L:/Mdr (6)
r A g g r
Combination of Egs. (2) and (3) with Egqs. (5) and (6) results in
1-y" = (1-¥) exp (ryPa)s (7)
YW (r) = y'w(r) exp [r pg(r)] (8)
with /
?A =:1-7/-]_‘—7+1n;‘A-an (9)
r r
Pelr) =i - w10 Fl(r) - 1nFa(r) (10)
r r

In phase separation experiments, a feed phase F is split into the two
coexisting phases ' and ”. The fraction of the feed volume that forms
phase ” is given by the quantity ¢ . Hence, the mass balance for the
polymer species in continuous thermodynamics reads

yEW(r) = (1 =) yW (r) « pyw(r) (11)
and, after integration,
vy Pyt (12)

Eq. (6) with Egs. (11) and (12) lesds to the relation

.1-9 - +2 (13)
=

4
r

1N
1!

The composition of the feed (i.e.\yF and WF(r)) is usually known, The
relations between the quantities referring to phase / and those referring
to phase ” are provided by Egs. (11) - (13), which permit elimination of
the quantities of one of the two coexisting phases, e.g. of those referring
to phase 7, Combination of Egs. (8) and (11) results in

wF WF(r)

o+ (- $) exp [- r yB(rﬂ

The expressions for‘il andz;é(r), are obtained from the excess Gibbs
energy relation used. In the general case, the excess Gibbs energy depends

ywi(r) = (14)
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on T,y , and the distribution function W(r). But in many relations used in
practice, the dependence on W(r) is neglected as an acceptable approxima-

tion. Then the coefficients also do not depend on W(r), and 7b and g, do

not depend on the identification variable r. A simple example is provided

by Huggins” y -parameter concept

APy =yve s ot InFg =y (2 -y)% s xex(T) (15)

In polymer fractionation, it is convenient to introduce the precipitation
rate K, In the continuous case, K is a continuous function of r defined as
the quotient of the amounts of segments of all species with segment numbers
between r and r + dr in phase ” and in the feed phase F, respectively:

ey o b Yu'(r) dr o y'w'(r) 6

(r) quf wh(r) dr qb\pF wE(r) (26)
Eq. (14) permits us to write

K(r) = ¢ (17)

¢+ (1 -CP) exp [- rgJB(r)]

Introduction of K({(r) permits us to obtain from Egqs. (11) and (14) the
simple relations

' (r) = i—'—;‘ﬂf W (r) (18)
q;"W"(r‘) - K(r) F WF(r') (19)

d v

These relations directly provide the unknown distribution functions W/(r)
and W”(r). The other unknowns cyﬂ 7", and ¢)(or T), may be calculated from
the relations
F
U -
1-y¢'= 1oy (20)
¢ + (1 -0) exp (- rafPa)

q/”=/%':l ¢F w(r) ar (21)

1 _ 1=y 1 K(r) FF d 22
= J’-rA +]r¢4} (r) dr (22)

Egs. (20) - (22) are obtained from Eqs. (7) and (12), Egs., (1) and (19),
and Egs., (6) and (21), respectively.

SUCCESSIVE POLYMER FRACTIONATION

As an example, successive precipitation fractionation (SPF) is considered.
A homogeneous polymer solution, called feed phase F, is split by lowering
the temperature into two coexisting phases, a polymer-lean phase ‘ and a
polymer~rich phase # , which are then separated. The polymer is isolated
from phase # as fraction 1. Phase / directly forms F for the next step,
etc., In the last step, the polymer of phase / forms the final polymer
fraction. All coexisting ‘ and # pairs are assumed to be in equilibrium,.
Hence, it is possible to apply Egs. (1) - (22). To indicate the different
separation steps 1,2,... the corresponding number, in general i, j, or k,
is added as a subscript,

since phase ' from step i is used directly as F for step (i + 1) the
following relations are valid:

F / F ' -F oy
Wisr =¥ 5 Wi () = Wi(r) o ryy =y (23) - (25)

On adding the subscript i Eq. (19) reads



1514 M. T. RATZSCH et al.

" Ki(r)
W' Wi (r) = 41> A (26)
i

Use of Egs. (18), (23), and (24) for successive substitution results in
- Ki(r) i=1 1 - K.(r)
Wi = =— T ——f—

=1 l-¢‘]

Eq. (27) permits the direct and explicit calculation of the distribution
function of fraction i, Wi(r), from the distribution function Wi(r) of the
original polymer. The form of this relation corresponds to the fractiona-

tion scheme applied. In steps j = 1,... i-1 the polymer-lean phase / is
taken to correspond to the occurrence of the factor (1 - K,{r))/(1 -<$.

)
for j = 1,,.. i-1 according to Eq. (18). In step i, the poiymer-rich p%ase”
is taken to correspaond to the factor Ki(r)/¢i according to Eq. (19).

| L w(r) (27)

i J

To perform the calculation, the composition of the original polymer

solution, i.e.tyz and Wi(r), must be given. Furthermore, Eq. (27) contains
the unknowns W}, Fg, and ¢j (or Tj) for j = 1,... i. These quantities are

to be calculated successively, i.e. at first for j = 21, then for j = 2
etc., from the relations

-y - Loy (28)
j ¢J * (l -¢J) exp (' rA S’AJ)
K, -1 1 -~K
Y .-./ Jﬂ.z. : k(r)wi Wi(r) dr (29)
ij ke L= O
1 -yl K -1 1 -K
P +/i SRR T 0F ey ar (30)
" "A r (bg k=1 1 _Cpk

Eq. (28) is Eq, (20) as applied to step j., Eq. (29) is obtained in an
analogous way from Eq., (27) by integration, Eqg., (30) is obtained
analogously from Eq. (6) and Eq. (27).

BAKER-WILLIAMS COLUMN FRACTIONATION

Precipitation fractionation developed by Baker and wWilliams (ref., 20) is
one of the most widely used column fractionation procedures, It is perfor-
med in a glass bead filled column with a temperature gradient down the
column, To start fractionation, the total polymer is precipitated on the
glass beads of a section at the entry of the column {or in a separate
vessel), In a mixing vessel, a nonsolvent and a solvent are mixed to form
a mixture with progressively more solvent power by continuous enrichment
of the solvent, The polymer is dissolved by adding the solvent mixture.
The resulting sol phase moves relatively to the column, and the polymer at
a given increment of the liquid sol stream becomes less soluble due to the
temperature gradient, and precipitates partially on the glass beads as a
gel phase. Fractionation is achieved by repeated exchange of polymer mole-
cules between the stationary gel phase and the mobile sol phase., Super-
position of a solvent/nonsolvent gradient and a temperature gradient leads
to very high efficiency.

Initially, a model is needed to describe the column fractionation by a
number of local equilibria. In this paper, one similar to that of Smith
(ref. 21) is used, The column is divided into stages labeled with

m (m=0,1,2,,..). The liquid stream is divided into increments with equal
volumes, labeled with n (n = 0,1,2,...). At time zero, the volume incre-
ment n = O fills stage m = O, at time one the volume increment n = O
occupies stage m = 1 and the volume increment n = 1 occupies stage m = O
etc, Each volume increment n at each stage m is considered to form a
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liquid~-liquid equilibrium {nm) between the sol phase ’ and the gel

phase ”, The gel phases “ being coated on the surfaces of the small

glass beads are stationary, i,e, they remain at the same stage m, However,
the moving sol phases ’/ always remain in the same volume increment n.

At the start of fractionation, the total polymer is assumed to be
precipitated at m = my = O or to be distributed evenly among the mp + 1

stages fromm = O to m = Mo The temperature gradient is expressed by
T =T

m o] i = (31)

Tm = TO - (m - mp) AT m > Mo

ms<m

where T, is the temperature of stage m and AT is the constant temperature
difference between neighbouring stages. The segment fraction Y of the
solvent in the solvent/nonsolvent mixture supplied to the entry (*) of

the column, Y;B, is assumed to be given by

¥ * * *

YnO = YOO + aY [1 - exp (- n/n )] (32)
*

where Yoo AY* and n” are the parameters of the function. The polymer

fractions are obtained from the sol phases of the last stage.

In contrast to the liquid-liquid equilibrium (LLE) discussed above, now a
solvent Al, a nonsolvent A2 and a polydispersed polymer 8 are present.
Therefore, some of Eqs. (1) ~ (22) must be reformulated. Eg. (6) now
reads

_J;=Y(1-ky)+(l-Y)(1-HV)+i;_1_=/W(r)dr (33)
r Ta1 Ta2 8 B r
Y{1 ~y) is the segment fraction of the solvent and (1 - Y) (1 - w) the

segment fraction of the nonsolvent, In the phase equilibrium problem,

there are now four unknown scalar gquantities: Y”, ¢’ F , and ® which may be
calculated from the equations (instead of Eqs. (20) - (22)) obtained by
combining equilibrium conditions and mass balances:

Y/I(1 _ *P”) - YF(l ‘L}’Fl (34)
D+ (1 =) exp (= ry 94)
" F F
(1-v)(@a-y) L =220 -v) (35)
¢+ (1 -cp) exp (- g ?B)
Wu= /K(P{r) WF W (r) dr (36)
S AT RS 20 N U A0 WE R 5 R ') JF W) dr (37)
I3 Al Fa2 rCP

When applying the LLE equations to the Baker-Williams fractionation, the
n and m will be indicated as subscripts, e.g. Eq. (18) now reads

1 ! 1 - K (I")
Van Ana(r) = ——0— g p W (0) (38)
1 '(pnm

If an equilibrium (nm) is established, the sol phase (nm) is moved to the
next column stage and the gel phase (nm) is waiting for the next volume
increment, The feed for an LLE does not exist as a homogeneous phase, i.e.

the feed (n+1,m+1)F for the LLE (n+1,m+1) is the union of the mobile sol
phase (n+1,m)” and the stationary gel phase (n,m+1)” . Accordingly the many
occurring phase equilibria are to be interrelated by the mass balances
reading for the polymer

4 " . F- _ / ”
wn+1,m(r) + wn,m+1(r) B wn+1,m+1(r) - wn+1,m+1(r) + wn+1,m+1(r)
(39)
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Here w(r) is the extensive distribution function, i.e, w(r) = W(r) ﬁB
where ﬁB is the overall amount of segments of all polymer species in the

phase considered, Similar treatment for successive polymer fractionation
leads to equations permitting the direct and explicit calculation of the
polymer distribution functions of all occurring phases from the distribu-~
tion Wgo(r) of the original polymer. The unknowns are Yz ' wg ) Fij and
5 for i = 0,1,...,nand j = 0,1,...,m, These quantities are to be
caiculated from Eqs. (34) ~ (37) as applied to the equilibrium (ij).

Some results will be presented based on the following specifications. The
segment molar excess Gibbs energy G~ reads

=E
R CER O TR 2 L IR CUE R 2 JOU A CRER S TR T S

RT
(40)
with X oy ap = 500K/T: X,y g = 150K/T; andX,, g = 250K/T. The distribu-

tion of the original polymer is assumed to be described by the Schulz-~
Flory function

F r r
Wo~(r) = exp (= ——) . (41)
00 150° 150

X X F
Furthermore, the following values are applied: Fa1 = 1, Faz = 1,&(00 = 0,02,
m, = 2, T0 = 340 K, AT = 2.5 K, Y

= * _ * _ ;
P 00 = 0.01, AY = 0.3, n™ = 30, To simulate

a hypothetical column fractionation special software was developed in
FORTRAN 77 for a personal computer in two separate program parts. One part
permits the successive calculation of the local equilibria where the
starting values are found by approximation routines or, if necessary, by

a random procedure, The other part is needed to interpret these quantities
and present the results in the desired manner.

A hypothetical Baker-Williams fractionation was then performed for a column
with 13 stages: 3 stages (without temperature gradient) containing the
polymer at the start, and 10 fractionation stages, The calculated distribu-
tions of the polymer in several selected increments of the liquid stream
are considered at two points of the column., Fig. 1a gives some of these
distributions after the dissolution process (on the first three stages),
i,e. for the polymer in phase / for m = 2 and various values of n, The
nonuniformity U is defined by the quotient of the weight average and the
average segment number less 1. In Fig. 1b some distributions of polymer
leaving the column are shown, i.e. of the polymer in phase ’ at stage

m = 12 and the indicated values of n., Comparison of Figs, 1a and b shows
the fractionation effect resulting from the temperature gradient of the
column, For the first parts of the liquid stream, particularly for n = O,
this effect is small. The reason is that a repeated exchange of polymer
between the phases is only possible if a stationary gel phase is already
precipitated at the higher stages.

w(r) T

W(r)T nz=10 n =25
0.03 4 0.03 U=00% U =00
1 n=0
us=os N=10
0.02 - U = 0.062 0.02
n=z 20
U = 0.054
n =30
0.014 U = 0.050 0.01 4§
—_ A —~ =TT y y T T —
= ™ 0 100 200 300
0 100 200 300 —
ay m= 2 —_— b) m = 12 .

.
Fig. 1. Polymer distribution functions (normalized to unity)
in the mobile sol phase at stage m for several values of n
(full line) and of the original polymer (broken line) with

the nonuniformity U = 1,
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CONTINUOUS POLYMER FRACTIONATION

Continuous polymer fractionation (CPF) (ref, 22) involves the following
counter-current extraction, A comparatively concentrated solution of the
polymer in a given solvent (the feed - FD) is introduced into a pulsed
sieve~bottom column at one end, and the same solvent but free from polymer
(extracting agent - EA) is added at the other end. The CPF splits the
polymer into two fractions leaving the column as sol and as gel. The
theoretical treatment is similar to that of the Baker-Williams fractiona-
tion, The column is divided into a number of stages m; the EA enters the
column at stage m = M hax and leaves it (as sol) at stage m = 1, The

stationary state is calculated by repeated calculation of stages
M= lyeas, Moo At start (j = 0) the column is filled with EA, For the

first set of equilibria (j = 1) a certain amount of FD is added at stage

m = 1, and the related phase” is transferred downwards to the next stage
m=2 (filled with EA),
When phase ” has left the column at m as the first (non-stationary)

ma x

gel phase, all phases / are shifted by one stage upwards, and stage Mrax
is filled with pure EA again. The calculation is repeated for j = 2 and

m=1,e00,m etc, The stationary state is reached when the results for
j and j-1 no ionger change systematically,

Experimental data for the CPF of polyethylene (ref. 23) were compared
with calculations based on the following specifications. The mass balance
for the polymer transfer in Eq. (39) now reads

é+1 ,j- oq(r) + wm 1 J(r) = ng(r) (42)

Usually a mixed solvent is applied, But here polyethylene was fractionated
in the pure (theta) solvent diphenyl ether and hence Egs. (1) - (22) can
be used without reformulation for the second solvent.Eq.(40) is replaced by

=E

G

po v(i -y)g ; 9 =9y (1L +py) (43)

Here p is a parameter expressing the effect of the composition won g. The
parameters p and gy were adjusted to phase equilibria for the temperature

(133 C) at which CPF is performed. The theoretical treatment allows
determination of the number of theoretical stages of the CPF-experiment or
-~ for a given number of physical stages - calculation of the stage effi-
ciency. In the present calculation, the 19 sieve bottoms of the CPF-column
are used as stages and the efficiency is fitted, The efficiency is defined
as the quotient of the polymer amount transferred from one phase to the
other and the polymer amount that must be transferred to reach phase
equilibrium, Fig. 2 compares calculated and experimental fraction
distribution functions, The good agreement demonstrates the applicability
of this treatment,

W(M)
GEL
SOL

0 ) 2 3
Ig[M/(kg/mol)] —_—

Fig, 2, Comparison of measured (points) and calculated
(lines) molecular weight distributions for the two frac-
tions (cf, Fig. 10 in ref. 23) of poly(ethylene) obtained
by CPF. The calculation was performed for 19 stages with
an efficiency of 0.2 (see text) and the parameters
99 = 0.199 and p = -2.3,
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