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Problems of surface thermodynamics

A.I.Rusanov

iiendeleev Centre, Leningred 199034, USSR

Absiract The modern forms of key equation of surface thermo-
dynamics are snalysed. 'he generalized Laplace equation in-
cludes anisotropy of surface tension and the second order cur-
vature terms. The generalized Young equation includes the line
work and the line curvature. The generalized Gibbs adsorption
equation for solid surfaces includes anisotropy of surface ten-
gion and of chemical potentials and is written also in terms

of surface work. Universel interrelations between surface ener-
gy, cohesive energy, and the vaporization heat are derived,

end their dependence on the surface structure of matter is es-~
tablished. The role of the surface and line tensions in formu-
lation of the equilibrium and stability conditions is discuss-
ed.

INTRODUCTION

The work of formation of unit area of an interface is the main quan-
tity of the surface thermodynamics. The process of formation of & new
surface can be carried out in two possible ways: as stretching an
initial surface and doing work against the forces of surface tension
or as cutting off (clearing) a body and doing work ageinst cohesional
forces. Designating the first work as ¥ end the second work as & ,
one may say that, for anisotropic surfaces, ¥ may depend on the
direction on the surface, whereas < 1s, evidently, a scalar quan-
tity ( & may be dependent of the direction of the crystallographic
plane, but not of the direction of the surface).

Gibbs (ref.1) first recognized the difference between ¥ and

for the case of solids. is weg shown by the suthors (ref.2), this dif-
ference is caused by the nonuniformity of chemical potentials near the
surface, i.e. by the absence of the diffusional equilibrium which is
attained especially slowly for solids. Diffusion is absent at all in
the model of a perfectly elastic body with all particles to be consi-
dered as fixed in the crystalline lattice. As foxr real solids at low
temperatures, diffusion proceeds slowly and often 1s not completed
after the time of experiment. A difference between ¥ and ¢& is
obvious to exist not only for solids, but also for nonequilibrium
fluid surfaces for which the diffusional equilibrium has not yet been
established. wmoreover, this difference appears also for the equilibri-
un surface of a polar liguid if the liquid is subjected to the action
of an external electric field (ref.3). However, Y = & for au
equilibrium liquid in the absence of a field.

The pressure anisotropy exists both in equilibrium and nonequilibrium
surface layers. But the anisotropy of pressure causes the anisotropy
of chemical potentials. This important statement of the surface ther-
modynamics was formulated first by Podstrigach (ref.4) and Stuke
(ref.5). The author's approach to the chemical potential anlsotrogy
snd the difference between ¥ and & was pubglshed earlier (ref.6)

11



112 A. . RUSANOV

Now we turn to the problem of reformulation of thermodynamic relation-
ships recognizing the difference between and & . Shuttleworth
(ref.7) first begen to discuss this problem. In particular, he pointed
out that the two key equations of the classicel theory of capillarity,
the Leplace equation and the Young equation, refer to different quan-
tities. The lLaplace equation should be expressed in terms of surface
tension, ¥ , and the Young equation in terms of o . Let us con-
gsider the modern forms of this relationships.

THE GENERALIZED LAPLACE EQUATION

The mechanical state of an anisotropic surface is characterized by the
surface tension tensor (the excess surface stress tensor), ¥ , and
surface tension & is given by the trace of tensor ¥»

y =% 4+ b4 op)/2 (1)

Y 11 and ¥ oo &re the principal velues of tensor 9 . If we now

imagine that a surface element between phases o and S is shifted
along the normal, N , the work of a small deformation will be

Ji) o N ¢ . ¥ 1
Cpyg =pyp) 4 AT+ ¥yyl, dby + ¥ 0L dby, +

2
ACydey + AC, dey, + Am g dh (2)

where py is the normal pressure in the adjacent phase (= or 2 ),
A = L1L2 ares of the surface element with principel linear dimensions
L1 and L2, ey and ¢ the principal curvetures of the element, C1 and

C, the corresponding coefficients, m the excess of mass per unit
afea, g the acceleration of gravity, h the hight of the element.The
first term is the work produced by the bulk phases while shifting the
surfece element. The second and the third terms represent the work of
stretching or contracting the surface element while it moves along the
normel., Simultaneously, the curvature of the element changes, which
yilelds the work given by the fourth and the fifth terms. The last term
corresponds to the work of a displacement of the surface element in
the gravitational field.

The Laplace equation is a mechanical equilibrium condition which means
that the total force acting on the surfece element is zero. Respecti-
vely, the work of elementary deformation of the element is also zero.
Equalizing (2) to zero with teking into account the geometrical rela-
tionships di = d(1/cy) = d(1/c,), dli = Iicid(1/cy)(i =1,2), and
dh/d¥ = cos ¥ , we get the gefleralized LapIasce efuation

« A 2 2
Py - Py = 4 1161 + ¥pp0es = Cief = Cue5 + mg cos Y (3)

where ¥ is the angle between the vertical and the normel to the sur-
face. It is seen from eq.(3) thet the normal pressure difference in ad-
jacent phases is caused by the curvature and the inclinetion of the
gurface.

In the absence of the gravitationel field, eq.(3) changes into the re=-
sult by Rusenov and Krotov (ref.8)

« p
- Py= ¥

2

P 1161 + T8 - Cqo§ - Oacp (4)

Two last terms msy be neglected if the surface curvature is not great.



Problems of surface thermodynamics 113

Then eq.(4) is reduced to the formule derived earlier by Krotov, Rusa-
nov, and Blinowski (ref.9)

=3 »
Py =Py = ¥Fqgep + ¥ouop (3)

In the case of an isotropic surface, ¥ ;4= 3’22 = ¥ , If the sdja-
cent bulk phases are also isotropic, normel pressure by may be replac-
ed with isotropic pressure p in a bulk phase. Then eq.(3) becomes

Pa‘— P ey (cq + cs) - chf - Czcg + mg cos ¥ (6)

In the absence of gravity, eq.(6) changes into Buff's formula (ref.10)
2 2
P - P = 3) (C»] + 02) - 0101 - 0202 (7)

Neglecting the second and the third terms on the right-hand side of
eq.(0) for a slightly curved surface, eq.(6) is reduced to Gibbs' equati-
on (ref.l, p.281, eq.(613))

pa-pﬁ=3’(cq+c2)+mgcos:‘f (8)

It should be noted thet the transition from (5) to (8) is also pos~-
gible for a strongly curved surface if it is sphericel and the surface
of tension is chosen as a dividing surface (then C1=CE=O).

The modern data on the self-adsorption of liquids (see, e.g., ref.il)
lead to the conclusion that the gravitational term in the generalized
Laplace equation is very small. For instange, the self-adsorption of
water at 20°C is M~ -2.5 x 10-% moles/m* and m = (T u = -4.5%10
kg/m~ (i is the molar mass). Then the second term on the right-hand
gide of eq.(&) even with cos ¥ =1 becomes comparable with the first
one (at ¥ = T72.7% mui/m) at curvature radii about 330 km. Lhe curve-
ture of real menisci is many orders higher, so that the gravitetional
term in (&) is negligible. Reteining only the leading term in the right-
hend side, eqg.(8) is reduced to the classical Laplace equation
i 3
p* ~p¥ = ¥ (eq + ¢y) ()

The Laplace equation determines the shape of the surface of cepillary
bodies and maekes the basement for meany methods of measuring surface
tension. It should be noted that the influence of gravity on the shape
of the surface may be essential for macroscopic bodies with & conside-
rable difference in density between phases « and 3 Dbecauge pressur-
es in the bulk phases chauge under the action of gravity.

EQUILIBRIUM AT THE THREE PHASE CONTACT LINE. THE GENERALIZED YOUNG
EQUATION

If several interfaces meet each other at the same line, the mechanical
equilibrium condition 1s expressed as the force balance

->

2 f,=0 (10)
k

where F is the force per unit length of the line produced by the

kth surfgce. uet the mechanicgl state of the kth surface be given by
the surface tension tensor, Klk' Then force k is determined as &

A
scelar product of tensor ¥ and the unit vector, > , 0of the normal
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to a given element of the line:

A -

-
£o= ¥, vV, (1)

Substituting (11) into (10), we express the mechanical equilibrium con-
dition &t the phase contact line through the surface tension tensor of
converging surfaces:

A ->

S}_{Yk.vk =0 (12)

According to (11), for the case of isotropic surfaces, force fk is
equal to surfece tension Xk :

- A > -> -
fk = Xk('] 'Vk) = Xk vkg Xk (13)
and eq.(12) changes into the known vectorial Weumenn equation
Ty (14)
¥, = O 14
" k

which holds at each element of the phase contact line. Equation (14)
is called Neumann's triangle in case of the three-phase line.

ilolecular structure and the pressure tensor field have been changed at
the phase contact line, which results in appearance of line tension,
T , an one-dimensional analog of surface tension. Line tension is
directed along the phase contact line and contributes to the mechani-
cal equilibrium condition if the line is curved. liore accurately, eq.
(12) is written as

A - -
E% LA \)k + Ten=20 (15)
end eq. (14) for isotropic surfaces becomes, respectively,
-
Zb’k+ Ten =0 (16)
k

>

where ¢ 1s the local line curvature, n the vector of the principel
normel of the line. It is seen from (15) and (16) that the correction
related to line tension depends on the line curvature and becomes im-
portent only for large curvatures., If the line is straight, the correc-
tion is zero and eqgs.(12) and (14) are valid.

The mechanical equilibrium conditions expressed in (12), (14)=(16) are
appliceble only to fluid systems where tensions exist usually at inter-
faces and their linear bounderies and cannot be in the bulk ag in the
cagse of golids, But if at least one phase is solid, internal stresses
arise in the bulk of a solid under the influence of surface forces

near the phase contact line, and these stresses should be included in~
to the force balance, eq.(10). The simplest example is & drop (L) on a
flat surface between & solid (S) and a gag (V) with contact angle 6.

In the absence of the drop, tension &SV acts on the solid surface

(double subscripts refer to the corresponding interfaces). When the
d{gp is present, there appears the additional force ¥y * gt

¥ sv * Ten which, being applied to the solid surface, will cause

internal stresses in the solid. There are no doubts about the reality
of this force since it leads to two experimentally observable phenome-
na: (i) rapid deformation of a solid along the three-phase line with
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formation of a ridge which is noticeable for bodies with a low elasti-
city modulus; (ii) slow diffusion of the substance of & solid to the
three-phase line (more noticeable at higher temperatures) which also
leads to the ridge formation (diffusion is caused by lowering chemical
potentials in the region of the three-phase line due to internal
stresses). It is not difficult to understand that the force given by
the left-hand side of eq.(16), may be compensated by internal stresses
in & solid at any given value of contact angle 6, Hence, the mecheni-
cel equilibrium condition at the three-phase line on a solid is not
related to a definite contact angle. This is the prinecipal difference
between the cases of solid and liquid pheses. In both cases, the drop
in & final equilibrium state adopts the shape of a lens, but contact
angle is determined by eq.(16) (i.e. by a set of surface tensions ¥y
in cage of a large drop) only for a liquid substrate.

Thus, mechanical equilibrium for the wetting of a solid is possible,
in principle, &t an arbitrary value of contact angle. By contrast,
thermodynamic equilibrium is atteined at a unique definite value of
contact angle. This equilibrium angle © can be found from the conditi-
on of a minimum of free energy for the three-phase system. The most
complete solution of this variationsl problem, including line tension
and gravity, for an arbitrary relief of a solid surface results in the
generalized Young equation (ref.12):

6 = éSL+ © ycos 6+ (R/r+ 22/ d1) [cos | (17

where &€ 1s the thermodynemic analog of line tension T and the one-
dimensional analog of & (the work of formetion of & unit length of

the three-phase line), r the local curvature radius of the three-

phase line, ¥ the inclination angle of the solid surface at the three-
phage line. The thermodynamic equilibrium condition, eq.(17), is ex-
pressed in terms of & . In contrast to & , & is sensitive to sur-
face straines, but not tostresses. Since deformation is very small for
solids, local values of © gy end © gy, in eq.(17) may be considered

to be the same as far from thne three-phase line, i.e. to be determined
only by the nature of surfaces.

For a flat horizontal surface of & golid, the generalized Young equati-
on becomes

e _
sy = © g+
If ragius r 1is not very small and the dependence of 3 on r is

negligible, eq.(18) changes into the result by Shcherbekov and Ryasant-
sev (ref.13):

GLV cos &+ &/r + 28/ 3 r (18)

éSV= éSL"‘ GLV cos & + 2 /r (19)

The role of the third term on the right-hand side of (17)-(19) depends
on the value of line work @ and on the line curvature. If a solid
surface is easily deformable, an effective value of s may be several
orders higher than the usual values (about 10-10 H), which leads to
the experimentally observable influence of the line term on contact
angle (ref.14). By contrast, e for solids with a high elasticity mo-
dulus (glasses, crystals, metals, etc.) ig so smell thaet the third
term in the right-hand side of eq.(19) is negligible for macroscopic
drops. Then eq.(19) changes into the classicel Young equation

6 — ~
— © g + © 1y cos @ (20)
or, i1f we remember that © v = ELLV for a fluid interfeace,
G gy = ) s, + ¥y cos © (21)

Quantities é‘SV end & SL include contributions from adsorbed films
on a solid surface. The presence of such films as well of gravity does
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not influence the form of the Young equation, though the drop shape is
dependent of gravity. The matter is that eqs.(17)-(21) express only a
boundery condition (mathematically, this is the transversality conditi-
on in the variational problem on the equilibrium shape of & drop on &
solid surface).

THE GENERALIZED GIBBS ADSORPTION EQUATION

Additionally to the two key relationships of the classical theory of
capillarity, the Laplace and Young equations, Gibbs introduced one more
relationship of fundamental importence, the adsorption equation. How-
ever, the adsorption equation was derived by him only for fluid inter-
faces. FPor a flet horizontal surface, the Gibbs adsorption equation is

dY:dé:-sdT-Zirid,u,i (22)
where § is excess entropy per unit area, T temperature, ’_i and
M4 the adsorption and the chemical potential of the ith componeut,

respectively.

In the case of a solid, gquantities ¥ and & are different, and, con-
sequently, there should be a separate adsorption equation for each of
this quantities (ref.2). Surface tension in the kth direction on e sur-
face 1s defined as an excess stress

b)k = - S (py - Pk“)ﬁ) dz (23)

where pgx'ﬁ

is the pressure component pﬁf for the part of surface
leyer on the side of phase o and the pressure component pﬁﬁ for

the part of surface layer on the side of phase 5 as considered

with respect to the dividing surfece, z is the normal to the surface
coordinate, integration is carried out over the whole thickness of sur-
face layer. 1f the equimolecular gsurface of & solid (i.e., the surface
satisfying the condition of zero-adsorption of the solid Fj = 0) is

chosen as a dividing surface, quantities g]& and & &re related to
each other by the expression (ref.6)

“, p
¢ = e Oy - Py 0oy e (24)

where f‘j(k) is the chemical potential of the solid in the kth direc-
tion, cj the local concentration of the substance of the solid, super-

script ‘o, & 1is read as o~ while integrating over the part of
gurface layer adjacent to phase o« and as 2 while integrating over
the part of surface layer adjacent to phase 5B

Additionally to the gubstance of the solid, there may be other compo-
nents in surface layer which may be adsorbed and desorbed and move
freely passing from surface layer to the surroundings. Such component
are celled mobil (let us denote them with subsecript i). Quantity 6
is defined with respect to mobil components as the surface density of
grand thermodynamic potentials

e =a-T§-Z/~iF.
1

s (25)

where U 1is excess energy per unit area, fhi and Fi chemical po-
tentials and adsorptions for mobil components, respectively.
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The fundemental equation for the energy, U, of a uniform thin layer is

N
QU = TaS - (5 : a8) V+ M, : &N, + = p, an, (26)
J J P i
where S is the entropy of the layer, V its volume, ﬁ the pressure ten-
sor, & the strain tensor (symbol ":" means the scalar product of ten-
gors), f‘j the chemical potential tensor of the substance of the so-

1id, N, and a, the amount of the substance of the solid and its ten-

sorisl chenge (ref.6), respectively (the work of bringing in the sub-
gtance intg volume of given dimensions depends on direction in the case
of a solid),

To derive the adsorption equation for & solid surface, let us subdivide
surface layer into the set of parallel elementary layers and apply eq.
(26) to each elementary layer implying tengential chenges. The diffe~
rence between eq.(26) for each elementery layer in the part of surface
layer on the side of phase « with respect to the dividing surface
(the equimolecular surfece) and the same equation for phase o may

be written as

U -U%)=ras -s5*) - [P -83=): a8 ] v +

A 'S A X A
sy = AT 0Dy e s g nf
+ Z Byoalyy - Ni“') (27)
1

The tangentiasl strein is assumed here 1o be the game for all elementa-
ry layers.

Congidering only tengential changes, eq.(24) mey be written
ol

A Ao, A i
(Cpg - p P cgan = 07 - (28)

A
where 1 is the unit tensor. Proceeding now to excess quantities, i.e.
integrating eq.(27) over the o« -region of surface layer and an analo-
gous equation over the f -~-region (with respect to the dividing sur-
face), and also using (23) and (28), we obtain

-~ —

PN 'S ~ Al A -
QU =75 + (¥ :d8)A - (¥ - & VA: Al /Ny + Z Wy Ay (29)
1

i
where excess_quantities are marked with a bar.Substituting T = A and
expressing u through & with the aid of eq.(25) yields

~ S N A
=-8,.y AT ? ~el1) : (de - JNL) - . .
48 =-8(4, + ( el1) : (de dNJ/NJ) Zl rl(j) ¢ pmy (30)
where subscript (j) refers to the equimolecular surface of a solid. Thig

is en analog (for quantity © ) of the Gibbs adsorption equation, quan-
tity ¥ changing in eccordance with eq.(24),

For & sigpleﬁenlargement in size withouﬁ a c¢henge in the shape of a
body, dé = dN,/N.. Thus, difference d& - dN,/N. is non-zero only for
real deformations. One may fix the amount of & solid, N., as it occurs
often in practice, say, in adsorption processes. Then, any change of
tensor e means deformation, and eq.{(30) becomes (ref.2).
—_— 5 - 3 13 & - l—

46 = -By)dl + (¥ - g1): db Zl i(y) &M g (3N)

or, for en isotropic solid (ref.15),

dé:-E(j)dT+(¥-6)dlnA-Ei Fi(j) dpy  (32)
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Equations (30)-(32) differ from the Gibbs adsorption equation for
fluids only in their mechanicel term, i.e. the second term on the
right-~hend side. It,is intgresting that this term disappears not only
for liquids when ¥ = & 1 but also for solids in the absence of
deformation. For & rigid solié, eq.(30) takes the traditional form of
the adsorption equetion

with the only difference that & # &, The equetions for e for
liquids and rigid solids look similarly. However, they differ in their
practical usage. In the case of liquids, & is determined directly
from experiment due to the condition @ = ¥, and eq. (33) is used for
the calculation of surface entropy and adsorption. In the case of so=-
lide, it is experimentelly easier to meesure adsorption, end eq.(33)
mey be applied to compute & change in & due to adsorption.

INTERRELATIONS BETWEEN SURFACE ENERGY, COHESIVE ENERGY, AND THE
VAPORIZATION HEAT

As is known, all surface quantities are dependent of the structure of
surface layer and, hence, it is not easy to relate them to bulk quan-
tities. If so, is it possible to find & universal interreletion bet-
ween surface and cohesive energies (the latter may be characterized by
the vaporizetion heat)? llany investigetions was done to answer this
quegtion. The first result was the known Stefan rule (ref.16) cleiming
that surface tension (Harkins (ref.17) replaced surfece tension by sur-
face energy) corresponds to the half of cohesive bonds in the bulk. The
most general equation relating the cohesive energy density, w , to
surface energy was derived by the author (ref.18).

We give first the definition: the cohesive energy of a system, Uc .

is a difference between the internal energy of the system and that of
the gas of the same molecules in the limit of zero density at the same
temperature. If e, is the energy per mole of the ith component of the

gas, the ftotal energy of & two-phase system may be represented as

U=U,+ }_;L e N, (34)

where Ni is the total number of moles of the ith component in the sys-
tem. Respectively, the excess surface energy is

U=TU, Z gl (35)

The excess surface cohesive energy, Uc , is defined as
’ﬁc=Uc—wﬁV+(wﬁ—w°")V (36)
where V is volume, o¢ and £ are the phase symbols.
Volume V and a&ll other excess quantities in eq.(35) depend on the po-
gition of the dividing surface. If we choose the position where the con-
dition holds
Z_ e.N, =0 (37)

(this 1s the equimolecular surface in case of en one-component sys-
tem), eq.(35) is reduced to

U =1U (38)

This means, in particular, that the specific surface energy, u , is
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the excess cohesive energy per unit area for the equimolecular divid-
ing surface in an one-component system.

For the dividing surface given by (37) (position 1), eqgs. (36) end
(38) yield

—

T=U -wPvs@® —w>)v (39)
and for the dividing surface satisfying condition E; = 0 (position 2)

0 = Uc -wPvs (w -w™) VS‘ (40)
Subtracting (4C) from (39), we get

o

U =P -w Y AV (41)

where AV = VH“" is the volume between the two positions of the

-V
dividing surface. Fr%m here
T o= (wP ow™ ) av/a (42)

where A is the area of the dividing surface given by (37) (the equimole-
cular surface in casge of an one-component system). iiquation (42) is a
rigorous universal relationship relating surface energy to the diffe-
rence of the cohesive energy densities in the adjacent bulk phases.

The linear parameter AV/A depending on the structure of surface la-
yer plays the role of a coefficient.

At a given shape of an interface, parameter AV/A may be expressed

through the distance between the above two positions of the dividing
surface. For & spherical interface

AV/a = Ar L1 - Av/rg + (Ax/r)? /3] (43)

where 4 r =1r; -1x, , vy and r, are the radii of the dividing sur-

faces satisfying the conditions (37) and Uc= 0, respectively. For a
flat (or a slightly curved) interface

AV/A = Az = 2y - 25 (44)

where Z4 and z, are the normal coordinates of the two dividing sur-
faces. The substitution of (44) into (42) yields

T=w® -w®) Az (45)

The apparent simplicity of egs.(42) and (45) is deceptive. Even in the
case of one component, the calculaetion of parameter AV/A demands
knowledge of the local density profiles of matter, c¢(x,y,z), and of co-
hegive energy, w(x,y,2z), ingide surface layer. It is seen from the ex-
pression

AV = [(({letxy,2) - cF] 7™ - c P ) -
- [ wx,y,2) - wB]/(w™ - w P )} dxdydz (46)
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In the casge of a flat interface, local densities ¢ and w depend
only on 2z, and eq.(46) becomes

4 z=${[_c(z) —cﬁl/ (¢ ™ -¢ £ ) -
- [W(z)-wﬁ]/(w“-wﬁ)} dz 47)

The integrand in eqs.(45) and (47) becomes zero inside the bulk phases,
go integration is carried out actually only over the nonuniform sur-
face layer. Since both the dividing surfaces are located inside sur-
face layer, distance Az should not exceed the effective thickness of
surface layer which is of order of molecular or atomic dimensions for
an one-component system far from the critical point.

If phase H is vacuum (or a gas), e 20andaw?® =0 so that eqs.
(42) and (46) may be written as
T o= - w AT/ (48)

AV = I/c® = Uc/w"“ = ,SSS [1 - uc(x,y,z)/u:' 1 =
[e(x,y,2)/c®] dxdydz (49)
or, for a flat surfeace,
W o= o~ Wo(_ A Z (LJO)

Doz = S [_1 - uc(z)/u:‘] [ c(z)/c*] daz (51)

where u, = w/c is cohesive energy per mole. Since (uc(z)l < lugk |,

we obtain from (51) & very important result: A z > 0 which means
that the dividing surface of zero cohesive energy is situated always
deeper in a condensed body than the equimolecular surface. is a con-
sequence, using also the obvious condition w* < 0 _in (50), we come
to the conclusion that surface energy is positive:r u > O.

Jow we relate surface energy to the vaporization heat. The molar heat
of phase transition anéfsis given by the enthalpy change

A« B B
- h = hv /c - h

o ot

Ab=n . /e (52)

where h is molar enthalpy, hv the enthalpy density, and c¢ the to-
tal number of moles of all components per unit volume. .e have

hv=uv+p=w+fi:eici+p (53)

where u, is energy density, p pressure, and ey the concentration of
the ith component. From (42), (52), and (b53), we obtain

u = [chh+ wjg(‘1 -c“/c‘3)+p“’ -cocpﬁ/cﬁ-
- Z e - ;P T/ BH] Ava (54)
i
This is a general equation relating surface energy to the enthalpy ef-

fect of phase trensition or to the phage trensition heat (which is -
A h). For an one-component system, cy = ¢, 80 the kinetic energy
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term in (54) disappears reducing eq. (54) to

u o= [chh+w~B(1 - /c® )4

+p* - c%p B/ B] AV (55)
If phase S is vacuum or a gas far from the critical point (w ﬁ;v o,
P LIPS P RT, RTe*s>p % ), eq. (55) becomes

2 =¢® (Ah -RT) AV/A = (Ah -RT) AV/A v™& (56)

whefe6>vd is the molar volume of & condensed phase. For a flat surface,
eq.(5 is

2 = (Anh -RT) Az/v™ (57)

For liquids u , An s and v can be determined directly from expe-
riment, end eq. (57) allows calculations of parameter A z characteriz-
ing the structure of surface layer. It has been found (ref.18) that

A z is usually several times smaller than the average intermolecular
distance in the bulk phase of a liquid.

SURFACE AND LINE CHARACTERISTIC IN STABILITY CONDITIONS

The condition of stable equilibrium of an arbitrary system was formu-
lated by Gibbs as

AU =0, AU >0, ¢°U =0 (8,V,4i; - const) (58)

where the volume constancy is meant generally as fixation of the ex-
ternal boundaries of the system. Deteiling condition (58), Gibbs came
to the stability condition for bulk phases (ref.t, p.111, eq.177)

AT AS - Ap AV + ZAfAiANi>o (59)
1

from where the conditions follow of thermal

AT AS = O (60)
mechanical
Ap AV <O (61)

and material stability
ZiAH,i ANi > 0 (62)

Inequality (59) was derived without considering surfece phenomensa.
Stebility conditions for surface layers and heterogeneous systems
(ref.11, Ch.1) and the role of line characteristics in stability (ref.
19) were analysed later by the author. As it was shown, the conditions
of thermal and material stability, (60) and (62), maintain, but the
mechanical stability condition takes ancther form when surface and
line characteristics are taken into account.
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The fundamental equation for the energy of & heterogeneous system may
be derived by summation of the corresponding equations for phases and
interfaces which are well known for the state of equilibrium. We con-
gsider the case when phases and interfaces are internally equilibrium,
but they are not in equilibrium with each other. Then we obtain the
fundamental equation

AU = S Td4S - ZpdV+ 2¥da + Z7vdl +
+2 L (27/9r) dr + 22 W, 4N, (63)
1

where & is surface tension, A the dividing surface area (Gibbs'! sur-
face of tension is used as a dividing surface for curved interfeaces),
2 line tension, L and r are the length and the curvature radius of
& portion of the dividing line, respectively. Summation ig carried out
over all elements of the system. rartial derivative 237/ 3 r may be
regarded as related to variation of the position of the dividing line
at a fixed physical state of the system. The analogous term for

is absent in eq. (63) because we refer ¥ and A to the surface of
tension for which 2% /2 r = O. For the dividing line, there also
exists the notion of the line of tension for which 27/ 2 r = 0 (ref.
11). However, it is not certainty that the line of tension coincides
with the intersection line of the surfaces of tension for different in-
terfaces if they intersect. This intersection line is & natural divid-
ing line in our consideration, so we have to set 37 / 2 r # O.

By differentiating, we obtain from eq. (63)

U =5 ar dS - Sdp aV + TA¥ du +

2dr dl + Fa(L aT/ar)dr + 22 d po g iy (64)
1

After the substitution of (64) into (58), we come to the necessary
condition of internal stebility of a heterogeneous system:

ZdTdS -Zdp 4V + Zd¥dA + Z do aL +
+Z 4(LaT/ar)dr + FZdp AN, = O
i
(8,V,H; - const) (65)

and, in particular, to the condition of mechanical stability

-2 dpdV + 2 A% dA + 2 dxdl + Z A(LaTt/2r) dr = 0 (66)

However, expression (66) is written correctly only under the conditi-
on that variaebles V,A,L, and r are independent. In practice, they
are often related each to others due to, e.g., & given shape of & bo=-
dy or other restrictions., This is of no importance for the mechanicel
equilibrium condition following from (58) and (63)

-2pdV+ Z¥dL +2ZTd + S L(2T/ar) dr = O (67)

because of the invariancy of the first differential form. But if we
differentiate (67) again, it is important to know whether quantities
V,A,L, and r depend on e%ch other_or on oﬁher quantities. If thgy
are functions, terms Z pdcv, = dzA,Z’c'd L, and £ L(27/2r)der
prove to be lost in (66). That is why the mechanical stability condi-
tion should be written in a more general form as

d [ -Zpav + Z¥as + 2TAL + ZL(2T/2 1) dr] = 0 (68)
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At fixed volumes of phases, conditions (67) and (68) become an analog
of the generalized Gibbs - Curie prineciple:

Sy +5Tvd + TLET/a1) dr = O (69)
a[F¥aa + Twa + ZL(3T/er) dr ] 2 0 (70)

In the absence of linear boundaries, conditions (69) end (70) are re-
duced to

S¥aa=0, 2 a¥ da+ S¥da = o0 (71)

For & gingle closed surface, condition (71) becomes

dh =0, ¥d°4 = 0 (72)

which means that the stable shape of & body corresponds ‘to & minimum
of the surfece area at positive surfeace tension, and to a maximum of
the surface area at negative surface tension. In the case of liquids,
condition ¥= & «< O means a complete instability when a body is
dispersed spontaneously up to molecular dimensions. In the cese of so-
lids, the gigns of ¥ end © may differ. If ¥ < 0O, a body is
stretched, but if & > 0 at the same itime, the body cen remein un-
destroyed and stable,

By analogy, in the case of & pure two-dimensional phase transition
(we may use here the line of tension and set 27/ 2 r = 0), the con-
dition of the stable mechanical equilibrium at constant surface areas
is

S2dl =0, Sav dL+ STdL B O (73)
For a closed line boundary of a single two-dimensionel phase, we ob-
tain from (73)

L. =0, &L Z» O (74)

It follows from (74) thet the two-dimensional phase region should
have a minimel perimeter, i.e. be a circle, under condition < > O.
If = were negative, there would be self-dispersion and diseppear-
ence of a two-dimensional phaese. Thus, experimental observations of
mecroscopic two-dimensgional phases give an evidence of the positive
sign of T in two-dimensional phase processes.

A segsile drop, o , between phases S (a gas) and ¥ (a sub-
strate) is the simplest example of a system containing both curved
surfaces and lines. Let surface «p be curved and surfaces o« ¥ and
#¥  flat so that dA®™Y = - dA B¥ ., The generalized Gibbs - Curie
principle is written in this cese as (ref.19)

Y Y o
(c,“ -cz,ﬁ )d_A‘xx+ (;PdA ﬁ+ S 2dl + 2L (2®&/27r) dr = 0 (75)

«p

¥
(dé,“ - déﬁx)dA” + dédﬁ dA + 7 dee dL +5@ d°L +
¥ p p
+Z a@er/ar) dar+ (G0 - g ®Y) a2, PP 5 o (76)

where we use & instead of ¥ and 2 instead of T because the
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substrate may be solid. Applying §76) to & change of the shape of the
linear boundary et fixed erea 4 ¢ and all fixed & s, We come to
the condition

. o ,
S e dl+ Z(e®/or) ardl + & L Pz 0 (1)

For a fixed position of the linear boundary, we obtain the stability
condition

s 0, " f o0 (78)

which means that surface area A.«f% ghould be minimel for any fixed
position of the three-phase line. We cannot fix area A %P at con-
stant volume of the drop since any change of the drop shape in accom~-
panied by & chenge of its surface area, namely A “$ if A *¥ ig fixed.
That is why there is no separaete stability condition for 2& oxr T .
Even their negative values are not excluded &t the three-phase line.
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