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Problems of surface thermodynamics 
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Abstract The modern forms of key equation of surface thermo- 
dynamics are analysed. The generalized Laplace equation iii- 
cludes anisotropy of surface tension and the second order cur- 
vature terms. The Generalized Young equation includes the line 
work and the line curvature. The generalized Gibbs adsorption 
equation for solid surfaces includes anisotropy of surface ten- 
sion and of chemical potentials and is mitten also in terms 
of surface work. Universal interrelations between surface ener- 
gy, cohesive energy, and the vaporization heat are derived, 
and their dependence on the surface structure of matter is es- 
tablished. 'the role of the surface and line tensions in formu- 
lation of the equilibrium and stability conditions is discuss- 
ed. 

INTRODUCTION 

The work of formation of unit area of an interface is the main quan- 
tity of the surface thermodynamics. The process of formation of a new 
surface can be carried out in two possible ways: t ls  stretching an 
initial surface and doing work against the forces of surface tension 
o r  as cutting off (clearing) a body and doing work against cohesional 
forces. Designating the first work as Y and the second work as G , 
one may say that, for anisotropic surfaces, r' may depend on the 
direction on the surface, whereas d is, evidently, a scalar quan- 
tity ( G may be dependent of the direction of the crystallographic 
plane, but not of the direction of the surface). 

Gibbs (ref.?) first recognized the difference between Y and d 
for the case of solids. AS was shown by the authors (ref.d), this dif- 
ference is caused by the nonuniformity of chemical potentials near the 
surface, i.e. by the absence of the diffusional equilibrium which is 
attained especially slowly for solids. diffusion is absent at all in 
the model of a perfectly elastic body with all particles to be consi- 
dered as fixed in the crystalline lattice. AS for real solids at low 
temperatures, diffusion proceeds slowly and often is not completed 
after the time of experiment. A difference between d and 6 is 
obvious to exist not only for solids, but also for nonequilibrium 
fluid surfaces for which the diffusional equilibrium has not yet been 
established. rbioreover, this difference appears a l s o  for the equilibri- 
um surface of a polar liquid if the liquid is subjected to the action 
of an external electric field (ref.3). however, d = 6 for &A 
equilibrium liquid in the absence of a field. 

"he pressure anisotropy exists both in equilibrium and nonequilibrium 
surface layers. But the arlisotropy of pressure causes the anisotropy 
of chemical potentials. 'this important statement of the surface ther- 
modynamics was formulated first by Podstrigach (ref.4) and Stuke 
(ref.5). The author's approach to the chemical otential anisotro Y 
and the difference between Y and 6 was pubyished earlier (reg.6). 
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How we turn to the problem of reformulation of thermodynamic relation- 
ships recognizing the difference between' # and & . Shuttleworth 
(ref.7) first began to discuss this problem. In particular, he pointed 
out that the two key equations of the classical theory of capillarity, 
the Laplace equation and the Young equation, refer to different quan- 
tities. The Laplace equation should be expressed in terms of surface 
tension, r' , and the Young equation in terms of G . Let us con- 
sider the modern forms of this relationships. 

THE GENERALIZED LAPLACE EQUATION 

The mechanical state of an anisotropic surface is characterizhed by the 
surface tension tensor (the excess surface stress tensoz), 
surface tension d is given by the trace of tensor Y : 

f , and 

$ = ( b' 1 1  + 2t 22) /2  ( 1  1 

b' and b' 22 are the principal values of tensor $ . If we now 
imagine that a surface element between phases a and J is shifted 
along the normal, iiT , the work of a small deformation will be 

P a  
( pyT - p,{) A di\J + d,,L2 dL1 + dZ2L, dL2 + 
A C1 dcl + A C2 dc2 + Am g dh ( 2 )  

where p, is the normal pressure in the adjacent phase ( CL or J3 ), 
A = L1L2 area of the surface element with principal linear dimensions 
L1 and L2, c1 and b2 the principal curvatures of the element, C ,  and 
C the corresponding coefficients, m the excess of mass per unit 
agea, g the acceleration of gravity, h the hight of the element.The 
first term is the work produced by the bulk phases while shifting the 
surface element. The second and the third terms represent the work of 
stretching or contracting the surface element while it moves along the 
normal. Simultaneously, the curvature of the element changes, which 
yields the work given by the fourth and the fifth terms. The last term 
corresponds to the work of a displacement of the surface element in 
the gravitational field. 

The Laplace equation is a mechanical equilibrium condition which means 
that the total force acting on the surface element is zero. Hespecti- 
vely, the work of elementary deformation of the element is also zero. 
Equalizing ( 2 )  to zero with taking into account the geometrical rela- 
tionships diiT = d(l/cl) = d(l/c, ) ,  dzi = Ijcid(l/c )(i =1,2),  and 
dh/dN = cos Y , we get the gefteralized Laprace eauation 

( 3 )  2 ply - pN = 8 llcl + gz2c2 - clc: - c2c2 + mg cos Y 

where f is the angle between the vertical and the normal to the sur- 
face. It is seen from eq.(3) that the normal pressure difference in ad- 
jacent phases is caused by the curvature and the inclination of the 
surf ace. 

In the absence of the gravitational field, eq.(3) changes into the re- 
sult by Rusanov and Krotov (ref.8) 

Two last terms may be neglected if the surface curvature is not great. 
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Then eq . (4 )  is  reduced t o  t h e  formula der ived  e a r l i e r  by Krotov, iiusa- 
nov, and Blinowski ( r e f . 9 )  

In the  case of an  i s o t r o p i c  s u r f a c e ,  
cen t  bulk phases a r e  a l s o  i s o t r o p i c ,  normal pressure  pN may be r ep lac -  
ed with i s o t r o p i c  pressure  p i n  a bulk phase. Then e s . ( ) )  becomes 

b' 1 1 =  d,, = .d . If the  ad ja -  

( 6 )  
d 2 

p - p p  = 2 ( c l  + c 2 )  - ~ . ~ c :  - c 2 c  c.-) + mg cos Y 
I n  the  absence of g r a v i t y ,  eq . (6 )  changes i n t o  Buf f ' s  formula ( r e f . lO)  

( 7 )  

iu'eglecting t h e  second and the  t h i r d  terms on t h e  r ight-hand s i d e  of 
eq . (6 )  f o r  a s l i g h t l y  curved s u r f a c e ,  eq . (b )  i s  reduced t o  Gibbs' equa t i -  
on ( r e f . l ,  p .281,  eq . (GI%))  

ai 
P 

P - P = s' ( c l  + c2)  + mg cos Y 
It should be noted t h a t  t he  t r a n s i t i o n  from ( 0 )  t o  (8) i s  a l s o  yos- 
s i b l e  f o r  a s t rong ly  curved su r face  i f  i t  i s  s p h e r i c a l  and t h e  su r face  
of terrsion i s  chosen as a d iv id ing  su r face  ( t h e n  C,=C,=O) .  

The modern da ta  on the  se l f - abso rp t ion  of l i q u i d s  ( s e e ,  e .g . ,  r e f .11 )  
l ead  t o  t he  conclusion t h a t  the  , r a v i t a t i o n a l  term i n  t h e  benera l ized  
m p l a c e  equat ion is  very small. 2 r i n s t a n  e ,  t he  se l f - adso rp t ion  o f  
water a t  dO0C is  I' G -&.5 x 10-8 inoles/m2 and m = 1' a l A  za - 4 . 5 ~ 1 0 4  
kg/mLi ( i ~  is  the  molar mass). Then the  second term on the  right-hand 
s i d e  of eq . (b )  eve11 with C O B  kf = I  becomes coinparsble wi th  t h e  f i r s t  
one ( a t  8 = ' 7 2 . 7 5  d / m )  a t  curva ture  r a d i i  about 330 Km. l'he curva- 
t u r e  of  r e a l  menisci  i s  maiiy orders  h ighe r ,  s o  t h a t  t he  & r a v i t a t i o n a l  
term i n  (U) i s  n e i l i g i b l e .  icetainin; only the  lead ing  term i n  t h e  r i g h t -  
hand s i d e ,  e q . ( b )  i s  reduced t o  the  c l a s s i c a l  Laplace equat ion 

( 5 )  

Yhe Laplace equat ion  determines the  shape of tile s u r f a c e  o f  c a p i l l a r y  
bodies and makes the  basement for many methods of measuring s u r f a c e  
tens ion .  It should be noted t h a t  the  inf luence  o f  g r a v i t y  on t h e  shape 
of the  s u r f a c e  may be e s s e n t i a l  f o r  macroscopic bodies wi th  a conside- 
r a b l e  d i f f e r e n c e  i n  dens i ty  between phases oc and p because pressur -  
es i n  t h e  bulk phases chal;ge under t h e  a c t i o n  of  g rav i ty .  

EQUILIBRIUM AT THE THREE PHASE CONTACT LINE. THE GENERALIZED YOUNG 
EQUATION 

i f  s e v e r a l  i n t e r f a c e s  meet each o the r  a t  the  same l i n e ,  t h e  mechanical 
equi l ibr ium condi t ioi i  i s  expressed as t he  f o r c e  balance 

where f' 
k t h  sur fkce .  ue t  t he  mechanic@ s t a t e  o f  t h e  
the  s u r f a c e  t ens ion  t e n s o r ,  
s c d a r  product  of t enso r  Y and the  u n i t  v e c t o r ,  3 , of the  normal 

is  the  f o r c e  p e r  u n i t  l eng th  o f  the  l i n e  produced by the  

k. ?hen f o r c e  5k i s  determined as a 
t h  su r face  be ,iven by 

A 4 
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to a given element of the line: 
3 A .+ 
f k =  11, ' J k  (11) 

Substituting ( I I )  into ( ' lo ) ,  we express the mechanical equilibrium con- 
dition at the phase contact line through the surface tension tensor o f  
converging surfaces: 

( 1 2 )  

According to ( I i ) ,  f o r  the case of isotropic surfaces, force 
equal to surface tension Xlc : 

fk is 

3 h 4 -+ 4 

fk = xk(l 'Vk) = gk '3, 5 v k ( 1 3 )  

and eq.(12) changes into the known vectorial ilewnann equation 

which holds at each element of the phase contact line. Equation (14) 
is called Neumann's triangle in case of  the three-phase line. 

hiolecular structure and the pressure tensor field have been changed at 
the phase contact line, which results in appearance of  line tension, 
Z , an one-dimensional analog of surface tension. Line tension is 
directed along the phase contact line and contributes to the mechani- 
cal equilibrium condition if the line is curved. hore accurately, eq. 
( 1 2 )  is written as 

and eq. (14) for isotropic surfaces becomes, respectively, 

3 
where c is the local line curvature, n the vector of the principal 
normal of the line. It is seen from (15) and (16) that the correction 
related to line tension depends on the line curvature and becomes im- 
portant only for large curvatures. if the line is straight, the correc- 
tion is zero and eqs.(l2) and (14) are valid. 

The mechanical equilibrium conditions expressed in (12), (14)-(16) are 
applicable only to fluid systems where tensions exist usually at inter- 
faces and their linear boundaries and cannot be in the bulk as in the 
case of solids. i3ut if at least one phase is solid, internal stresses 
arise in the bulk of a solid under the influence of surface forces 
near the phase contact line, and these stresses should be included in- 
to the force balance, eq.(lO). The simplest example is a drop (L) on a 
flat surface between a solid ( S )  and a gas (V) with contact angle 0. 
izn the absence of the drop, tension d S V  acts on the solid surface 
(double subscripts refer to the corresponding interfac-es). dh%n the 
drop is present, there appears the additional force IILv + i fsL + 

internal stresses in the solid. There are no doubts about the reality 
of this force since it leads to two experimentally observable phenome- 
na: (i) rapid deformation of a solid along the three-phase line with 

3 --f 

T c n  which, being applied to the solid surface, will cause sv + 
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formation of a ridge which is noticeable for bodies with a low elasti- 
city modulus; (ii) slow diffusion of the substance of a solid to the 
three-phase line (more noticeable at higher temperatures) which also 
leads t o  the ridge formation (diffusion is caused by lowering chemical 
potentials in the region of the three-phase line due to internal 
stresses). It is not difficult to understand that the force given by 
the left-hand side of eq.(16), may be compensated by internal stresses 
in a solid at any given value of contact angle 0. Hence, the mechani- 
cal equilibrium condition at the three-phase line on a solid is not 
related t o  a definite contact angle. This is the principal difference 
between the cases of solid and liquid phases. In both cases, the drop 
in a final equilibrium state adopts the shape of a lens, but contact 
angle is determined by eq.(16) (i.e. by a set of surface tensions 
in case of a large drop) only for a liquid substrate. 

Thus, mechanical equilibrium for the wetting of a solid is possible, 
in principle, at an arbitrary value of contact angle. By contrast, 
thermodynamic equilibrium is attained at a unique definite value of 
contact angle. This equilibrium angle 8 can be found from the conditi- 
on of a minimum of free energy for the three-phase system. The most 
complete solution of this variations1 problem, including line tension 
and gravity, for an arbitrary relief of a solid surface results in the 
generalized Young equation (ref.12): 

8, 

where a? is the thermodynamic analog of line tension T and the one- 
dimensional analog of d (the work of formation of a unit length of 
the three-phase line), r the local curvature radius of the three- 
phase line, SP the inclination angle of the solid surface at the three- 
phase line. The thermodynamic equilibrium condition, eq,(17), is ex- 
pressed in terms of 6 . In contrast to Y , 6 is sensitive to sur- 
face straines, but not tostresses.Since deformation is very small for 
solids, local values of G sv and CS s~ in eq.(17) may be considered 
to be the same as far from tne three-bnase line, i.e. to be determined 
only by the nature of surfaces. 

F o r  a flat horizontal surface of a solid, the generalized Young equati- 
on be comes 

If raaius r is not very small and the dependence of a= on r is 
negligible, eq.(16) changes into the result by Shcherbakov and Ryasant- 
sev (ref.13): 

g , ,  = hSL + d,, cos 0 + g / r  (19 )  

The role of the third term on the right-hand side of (17)-(19) depends 
on the value of line work de and on the line curvature. If a solid 
surface is easily deformable, an effective value of ~e may be several 
orders higher than the usual values (about 10-lo H), which leads to 
the experimentally observable influence of the line term on contact 
angle (ref.14). By contrast, de for solids with a high elasticity mo- 
dulus (glasses, crystals, metals, etc.) is so small that the third 
term in the right-hand side of eq.(19) is negligible for macroscopic 
drops. Then eq.(l9) changes into the classical Young equation 

or, if we remember that G Lv = 8 zv for a fluid interface, 

6 sv = SL + g L V  COB 8 (21  1 
Quantities Q sv and 6 sL include contributions from adsorbed films 
on a solid surface. The presence of such films as well of gravity does 
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not influence the form of the Young equation, though the drop shape is 
dependent of gravity. The matter is that eqs.(l7)-(*21) express only a 
boundary condition (mathematically, this is the transversality conditi- 
on in the variational problem on the equilibrium shape of a drop on a 
solid surface). 

THE GENERALIZED GIBBS ADSORPTION EQUATION 

Additionally to the two key relationships of the classical theory of 
capillarity, the Laplace and Young equations, Gibbs introduced one more 
relationship of fundamental importance, the adsorption equation. Bow- 
ever, the adsorption equation was derived by him only for fluid inter- 
faces. F o r  a flat horizontal surface, the Gibbs adsorption equation is 

( 2 2 )  

where is excess entropy per unit area, iil temperature, fi and 
pi the adsorption and the chemical potential of the ith componeLLt, 

respectively. 

In the case of a solid, quantities and 6 are different, and, con- 
sequently, there should be a separate adsorption equation for each of 
this quantities (ref.2). durface tension in the kth direction on a sur- 
face is defined as an excess stress 

= 
where p:l’ is the pressure component pk 
layer on the side of phase OL and the pressure component p/ for 
the part of surface layer on the side of phase J% as considered 
with respect to the dividing surface, z is the normal to the surface 
coordinate, integration is carried out over the whole thickness of sur- 
face layer. If the equimolecular surface of a solid (i.e., the surface 
satisfying the condition of zero-adsorption of the solid rj = 0) is 
chosen as a dividing surface, quantities d k  and 6 are related to 
each other by the expression (ref.6) 

for the part of surface 

where p j(k) is the chemical potential of the solid in the kth direc- 
tion, c the local concentration of the substance of the solid, super- 
script oc, J3 is read as a while integrating over the part of 
surface layer adjacent to phase & and as J3 while integrating over 
the part of surface layer adjacent to phase ~3 . 
Additionally to the substance of the solid, there may be other compo- 
nents in surface layer which may be adsorbed and desorbed and move 
freely passing from surface layer to the surroundings. Such component 
are called mobil (let us denote them with subscript i). Quantity 6 
is defined with respect to mobil components as the surface density of 
grand thermodynamic potential: 

j 

( 2 5  1 

c where u is excess energy per unit area, pi and fi chemical po- 
tentials and adsorptions for mobil components, respectively. 
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The fundamental equation for the energy, U, of a uniform thin layer is 
h A 

dU = TdS - (p” : de“) V + p j  : dNj + pi dlVi i 
where S is the entropy of the layer, V its volume, p  ̂
sor, 8 the strain tensor (symbol tr:ll means the scalar product of ten- 
SOrB), p j  A the chemical potential tensor of the substance of the so- 
lid, N. and dN. the amount of the substance of the solid and its ten- 
sorial change (ref .6), respectively (the work of bringing in the sub- 
stance into volume of given dimensions depends on direction in the case 
of a solid). 

To derive the adsorption equation for a solid surface, let us subdivide 
surface layer into the set of parallel elementary layers and apply eq. 
(26) to each elementary layer implying tangential changes. The diffe- 
rence between eq.(26) for each elementary layer in the part of surface 
layer on the side of phase OC with respect to the dividing surface 
(the equimolecular surface) and the same equation for phase oc may 
be written as 

the pressure ten- 

J J 

o( 
d(U - U )= Td(S - S O c )  - [ ($  - $ O C ) :  d$] V + 

A - 6  Ir AGf A & + ( pj - f j  1: + : d(Nj - N j  ) + 
J j 

+ pi d(iQi - Nid ) (27) 
1 

The tangential strain is assumed here to be the same for all elementa- 
ry layers. 

Considering only tengential changes, eq.(24) may be written 

(28)  
h 

where 1 is the unit tensor. Proceeding now to excess quantities, i.e. 
integrating eq.(27) over the a -re ion of surface layer and an analo- 
gous equation over the 
face), and also using (23) and (28) ,  we obtain 

J3 -region ?with respect to the dividing sur- 

- -  
where excess,-quantities are marked with a baresubstituting U = LUI and 
expressing u through G with the aid of eq.(25) yields 

where subscript ( j )  refers to the equimolecular surface of a solid. This 
is an analog (for quantity 6 ) of the Gibbs adsorption equation, quan- 
tity Y changing in accordance with eq. (24). 

For a simple,enlargement in size without a Ghange in the shape of a 
body, d$ = dN /N dg - ’CW ./N . is non-zero only for 
real deformations. One may fix the amount of a solid, N j ,  as it occurs 
often inApractice, say, in adsorption processes. Then, any change of 
tensor e means deformation, and eq.(30) becomes (ref.2). 

Thus, difference 5 5 .  J J  

or, for an isotropic solid (ref.l5), 
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Xquations (30)-(32) differ from the Gibbs adsorption equation for 
fluids only in their mechanical term, i.e. the second term on the 
right-hand side. It,,is interesting that this term disappears not only 
for liquids when d = 6 1 but also for solids in the absence of 
deformation. For a rigid solih, eq.(30) takes the traditional form of 
the adsorption equation 

with the only difference that Cj f 8 .  The equations for d f o r  
liquids and rigid solids look similarly. However, they differ in their 
practical usage. In the case of liquids, G is determined directly 
from experiment due to the condition c = d ,  and eq. (33) is used for 
the calculation of surface entropy and adsorption. In the case of so- 
lids, it is experimentally easier to measure adsorption, and eq.(33) 
may be applied to compute a change in G due to adsorption. 

INTERRELATIONS BETWEEN SURFACE ENERGY, COHESIVE ENERGY, AND THE 
VAPORIZATION HEAT 

Rs  is known, all surface quantities are dependent of the structure of 
surface layer and, hence, it is not easy to relate them to bulk quan- 
tities. If so, is it possible to find a universal interrelation bet- 
ween surface and cohesive energies (the latter may be characterized by 
the vaporization heat)? hiany investigations was done to answer this 
question. The first result was the known Stefan rule (ref.16) claiming 
that surface tension (Harkins (ref.17) replaced surface tension by sur- 
face energy) corresponds to the half of cohesive bonds in the bulk. The 
most general equation relating the cohesive energy density, w , to 
surface energy was derived by the author (ref,lE), 

de give first the definition: the cohesive energy of a system, Uc , 
is a difference between the internal energy of the system and that of 
the gas of the same molecules in the limit of zero density at the same 
temperature. If ei is the energy per mole of the ith component of the 
gas, the total energy of a two-phase system may be represented as 

U = Uc + Z eiNi (34) 
A 

where Ni is the total number of moles of the ith component in the sys- 
tem. kiespectively, the excess surface energy is 

I 4 -  u = uC + Z eiiti 
i - 

The excess surface cohesive energy, Uc , is defined as 
(W”-WU) v 

( 3 5 )  

where V is volume, Crc and ~’3 are the phase symbols. 

Volume V and all other excess quantities in eq.(35) depend on the po- 
sition of the dividing surface. If we choose the position where the con- 
dition holds 

Z eiMi = o 
i ( 3 7 )  

(this is the equimolecular surface in case of an one-component sys- 
tem), eq.(35) is reduced to 

- - u = uc 
- This means, in particular, that the specific surface energy, u , is 
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the excess cohesive energy per unit area for the equimolecular divid- 
ing surface in an one-component system. 

For the dividing surface given by ( 3 7 )  (position l ) ,  eqs. ( 3 6 )  and 
(38) yield - u = uc - wp v + ( W P  - w OC ) v; (39) - 
and for the dividing surface satisfying condition Uc = 0 (position 2 )  

(40) 

Subtracting (4C) f r o m  ( 3 S ) ,  we get 

b( OC where A V  = V, - V is the volume between the two positions of the 
dividing surface. Frgm here 

- 
u = (w J3 - w OC ) A V / A  (42) 

where A is the area of the dividing surface given by (37) (the equimole- 
cular surface in case of an one-component system). dquation (42) is a 
rigorous universal relationship relating surface energy to the diffe- 
rence of the cohesive energy densities in the adjacent bulk phases. 
The linear parameter AV/A depending on the structure of surface la- 
yer plays the role of a coefficient. 

lit a given shape of an interface, parameter A V / A  may be expressed 
through the distance between the above two positions of the dividing 
surface. For a spherical interface 

where 
faces satisfying the conditions (37) and 
flat ( o r  a slightly curved) interface 

A r = rl - r2 , r, and r2 are the radii of the dividing sur- 
Uc= 0, respectively. For a 

where zl and z2 are the normal coordinates of the two dividing sur- 
faces. The substitution of (44) into (42) yields 

The apparent simplicity of eqs.(42) and (45) is deceptive. Even in the 
case of one component, the calculation of parameter AV/A demands 
knowledge of the local density profiles of matter, c(x,y,z), and of co- 
hesive energy, w(x,y,z), inside surface layer. It is seen from the ex- 
press ion 

- Lw(x,y,z) - w $ l / ( w  * - w 9 ) }  dxdydz (46) 
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In the case of a flat interface, local densities c and w depend 
only on z, and eq.(46) becomes 

A z ={{Lc(z) - c"]/ (cw - c ' ) - 
- [ W ( Z )  - w 5J/(W" - w f 5  )3 dz ( 4 7 )  

The integrand in eqs.(46) and (47) becomes zero inside the bulk phases, 
so integration is carried out actually only over the nonuniform SLW- 
face layer. Since both the dividing surfaces are located inside s u r -  
face layer, distance A Z  should not exceed the effective thickness of 
surface layer which is oi' order of molecular or atomic dimensions for 
an one-component system far from the critical goint. 

I.f phase 
(42) and ( 4 6 )  may be written as 

8 is vacuum ( o r  a gas),  c ' = 0 and w ' = 0 so that eqs. 

n v/a (46) o! .- 
u = - w  

or, f o r  a flat surface, 

where u = w/c is cohesive energy per mole. Since (uc( z) I C I ucu- 1 , 
we obtain from (51 ) a very important result: z 7 0 which means 
that the dividing surface of zero cohesive energy is situated always 
deeper in a condensed body than the equimolecular surface. lAs a con- 
sequence, using also the obvious condition w Q - < * O  - in ( 5 O ) ,  we come 
to the conclusion that surface energy is positive: u 7 0. 

Jow we relate surface energy to the vaporization heat. The molar heat 
of phase transition a+ s, is given by the enthalpy chande 

C 

where h is molar enthalpy, h, the enthalpy density, and c the to- 
tal number of moles of all components per unit volume. ,#e have 

h = u  + p = w + z e i c i + p  
i v V (53 1 

where uv is energy density, p pressure, and ci the concentration of 
the ith component. Prom (42), ( 5 2 ) ,  and ( 5 3 ) ,  we obtain 

- - 
u = [cdAh + w ( 4  - c d  /c j3 ) + p d  - cocp bi3/cb 

- ci s"c -/c J3 ) I  d V / A  
oc: - Z ei(ci 

i 
(54) 

This is a general equation relating surface energy to the enthalpy ef- 
fect of phase transition o r  to the phase transition heat (which is - 
Ah). &'or an one-component system, ci = c , so the kinetic energy 
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term in (54) disappears reducing eq. (54) to 

If phase $3 
p 6 /C Ir e RT, RTc'l >> p OC ) , eq. (55) becomes 

is vacuum o r  a gas far from the critical point (w ', 0, 

(56) cv. - 
u = c ( A h  - RT) A V/A = (Ah -RT) b V / A  vOc 

o( where v is the molar volume of a condensed phase. F o r  a flat surface, 
eq.(56) is 

- 
u = (Ah - RT) Az/v" (57) 

c 

For liquids u 
riment, and eq. 157) allows calculations of parameter A z characteriz- 
ing the structure of surface layer. It has been found (ref.18) that 

distance in the bulk phase of a liquid. 

A h , and vc"- can be determined directly from expe- 

A z is usually several times smaller than the average intermolecular 

SURFACE AND LINE CHARACTERISTIC I N  STABILITY CONDITIONS 

The condition of stable equilibrium of an arbitrary system was formu- 
lated by Gibbs as 

(58 1 2 d U = 0, A U  7 0 ,  d U p 0 (S,V,Ni - const) 
where the volume constancy is meant generally as fixation of the ex- 
ternal boundaries of the system. detailing condition (58), Gibbs came 
to the stability condition for bulk phases (ref.1, p.111,  eq.171) 

from where the conditions follow of thermal 

mechanical 

A p  A V  ( 0  (61  ) 

and material stability 

( 62 ) 

Inequality (59) was derived without considering surface phenomena. 
Stability conditions for surface layers and heterogeneous systems 
(ref.11, Ch.1) and the role of line characteristics in stability (ref. 
l9) were analysed later by the author. As it was shown, the conditions 
of thermal and material stability, (60) and ( 6 2 ) ,  maintain, but the 
nechanical stability condition takes another form when surface and 
line characteristics are taken into account. 
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The fundamental equation for the energy of a heterogeneous system may 
be derived by summation of the corresponding equations for phases and 
interfaces which are well known for the state of equilibrium. de con- 
sider the case when phases and interfaces are internally equilibrium, 
but they are not in equilibrium with each other. Then we obtain the 
fundamental equation 

dU =: z TdS - Z p d V  + ZddA. + Z T d L  + 

where d is surface tension, A the dividing surface area (Gibbs' sur- 
face of tension is used as a dividing surface for curved interfaces), 

line tension, L and r are the length and the curvature radius of 
a portion of the dividing line, respectively. Summation is carried out 
over all elements of the system. Partial derivative aT/ar may be 
regarded as related to variation of the position of the dividing line 
at a fixed physical state of the system. The analogous term for 
is absent in eq. (63) because we refer d and A to the surface of 
tension for which a ??/2r = 0. For the dividing line, there also 
exists the notion of the line of tenElion for which a " /  a r = 0 (ref. 
11). however, it is not certainty that the line of tension coincides 
with the intersection line of the surfaces of tension for different in- 
terfaces if they intersect. This intersection line is a natural divid- 
ing line in our consideration, so we have to set 

By differentiating, we obtain from eq. 163.) 

d 

a 5  / a r # 0. 

a 2 U  = z d T d S - z d p d V + Z d 2 d ~ +  

Zdv dL + E d ( L  aT/ar)dr + Zzdpi &Ti (64) 
i 

,!fter the substitution of (64) into (58), we come to the necessary 
condition of internal stability of a heterogeneous system: 

ZdTds - 2 d p  dV + 2d;r'dA + Z d e d L  + 
+ 2 d(L a T /  ar)dr + zz d p idi\li >, 0 

i 
(S,V,l\Ji - const) (65) 

and, in particular, to the condition of mechanical stability 

liowever, expression ( 6 6 )  is written correctly only under the conditi- 
on that variables V,A,L, and r are independent. In practice, they 
are often related each to others due to, e.g., a given shape of a bo- 
dy or other restrictions. This is of no importance for the mechanical 
equilibrium condition following from (58) and (63)  

- Z p d V  + Zb'd.4 + ZYdL + z L(a-t/ar) dr = 0 ( 6 7 )  

because of the invariancy of the first differential form. But if we 
differentiate (67 )  again, it is important to know whether quantities 
V,A,L, and r depend on e ch other or on o her quantities. If th2y 

prove to be lost in (66). That is why the mechanical stability condi- 
tion should be written in a more general form as 

are functions, terms Z pd 2 V, Z d2A, E T d  2 L, and Z L(aZ/ar)d r 

d [ - r p d V + r ~ d A + Z Z d L + Z L ( a " t r / a r )  d r l 3 O  (68) 
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At fixed volumes of phases, conditions (67) and (68) become an analog 
of the generalized Gibbs - Curie principle: 

In the absence of linear boundaries, conditions (69) and (70) are re- 
duced to 

For a single closed surface, condition (71) becomes 

(72 1 2 d h = O ,  $ d A  3 0 

which means that the stable shape of a body correspondstto a minimum 
of the surface area at positive surface tension, and to a maximum of 
the surface area at negative surface tension. In the case of liquids, 

, condition 'd = b < 0 means a complete instability when a body is 
dispersed spontaneously up to molecular dimensions. In the case of so- 
lids, the signs of d and B may differ. If Y .= 0, a body is 
stretched, but if G 0 at the same time, the body can remain un- 
destroyed and stable. 

By analogy, in the case of a pure two-dimensional phase transition 
(we may use here the line of tension and set ar/ 'a r = 0), the con- 
dition of the stable mechanical equilibrium at constant surface areas 
is 

z~dL=0, t d z  d L + Z T d 2 L  3 0 ( 7 3 )  

Bor a closed line boundary of a single two-dimensional phase, we ob- 
tain from ( 7 3 )  

d L = o ,  d2L 3 0  (74 )  

It follows from (74) that the two-dimensional phase region should 
have a minimal perimeter, i.e. be a circle, under condition Z > 0. 
If ,T were negative, there would be self -dispersion and disappear- 
ence of a two-dimensional phase. Thus, experimental observations of 
macroscopic two-dimensional phases give an evidence of the positive 
sign of Z in two-dimensional phase processes. 

A sessile drop, OL , between phases P (a  gas) and s' (a sub- 
strate) is the simplest example of a system containing both curved 
surfaces and lines. Let surface " ~ 3  be curved and surfaces olY and 
p d  flat so that dAur = - U p a  . The generalized Gibbs - Curie 
principle is written in this case as (ref.19) 

d f  + 2 d(LaZ/a r) dr + ( d - " 1  d2Adg t 

where we use Zr instead of ;Y and a2 instead of T because the 
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substrate may be solid. Applying $76)  to a change of the shape of the 
linear boundary at fixed area A d  and all fixed Q , we come to 
the condition 

F o r  a fixed position of the linear boundary, we obtain the stability 
condition 

which means that surface area A 
position of the three-phase line. ,!e cannot fix area A d f i  
stant volume of the drop since any change of the drop shape in accom- 
panied by a chalige of its surface area, namely A ”P if A 
That is why there is no separate stability condition for a% or T’ . 
Xven their negative values are not excluded at the three-phase line. 

should be minimal for any fixed 
at con- 

is fixed. 
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