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Abstract Accuracy is the central measure of quality in Analytical Science. Three topics, essential 
in the pursuit of accuracy, especially in the exposure and reduction of the "big" errors in analytical 
measurements, are reviewed in this article. The first topic, Analytical Nomenclature, lies at the heart 
of any effort to realize and communicate the nature and level of accuracy of the Chemical 
Measurement Process (CMP). The discussion centers about the historic role of IUPAC in this 
endeavor, together with some outstanding problems in Analytical Nomenclature, particularly as 
related to detection and identification. The second topic comprises assumptions and standards 
(materials and data) that are crucial in the search for major errors and in the control of accuracy, 
both within and between laboratories. Standard (Certified) Reference Materials have long been 
central to this effort, but more recently they have been joined by Standard Test Data. The latter, 
data sets having known characteristics, designed to simulate the structure of complex analytical 
signals, show great promise for the control of quality in the computational phase of the CMP. The 
final topic relates to Revolutions in Analytical Measurement Science that can make the most 
profound impact on accuracy: revolutions in sampling, measurement, and computation. Two 
illustrations are presented: (1) Accelerator Mass Spectrometry, a fundamentally new approach to 
atomic and isotopic mass spectrometry that makes possible the direct measurement of element and 
isotope ratios as small as and (2) Exploratory Statistical Graphics, a data visualization tool 
that permits analytical scientists to directly apply their intuitive "vision" to the assessment of 
multivariate data quality, and to search for unsuspected relationships in complex chemical datasets. 

INTRODUCTION 

Accuracy, broadly interpreted, represents the most important goal of Analytical Measurement Science. If 
our Chemical Measurement Processes are to serve both the practical needs of humankind and excellence 
in the pursuit of new scientific knowledge, they must be endowed with an adequate level of accuracy. 
Accuracy transcends the conventional measures of quality. Control, and acceptable bounds for imprecision 
and bias are clearly prerequisites; but scientific conventions (communication) and scientific and 
technological means for approaching "the tmth" must also be considered. These issues are especially 
appropriate for discussion at the International Congress on Analytical Sciences 1991 for two reasons: first, 
accuracy in scientific communication is a vital mission of the sponsor, IUPAC; second, the 
multidiscliplinary perspective that is implied in the title of the Congress is mandatory for effecting our 
approach to accuracy. 

Accuracy in communication, among scientists and with the public, begins with nomenclature. Terminology 
is but the first step; rather, quality nomenclature comprises the fundamental meanings of analytical concepts, 
together with internationally-accepted terms and symbols. Nomenclature relating to the structure of the 
CMP, especially its functional and error components, is vital for exposing critical assumptions and 
capabilities. Although there are many outstanding international nomenclature documents, some 
problems remain. Diverse nomenclature for analytical detection and diverse practices for the reporting of 
analytical data, of some consequence for the assessment and regulation of health and safety, are reviewed, 
together with recommended solutions. 

* Contribution of the National Institute of Standards and Technology; not subject to copyright. 
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COMMUNICATION 

Historical perspective 
At the 36th IUPAC General Assembly (Hamburg, August 1991) a reprint was distributed that gave a brief 
history of events in the 19th century chemical world that led to the Karlsruhe Congress of 1860 -- a 
meeting that foreshadowed the establishment of IUPAC. The central issue, as evidenced by the extracts 
in Table 1, was scientific communication and nomenclature (ref. 1). Since its first conference in Rome 
(1920) IUPAC has vigorously pursued the nomenclature problem; the result is the rainbow series listed in 
Table 2 (ref-2). The effort, of course, has expanded across disciplines. One of the most important 
multidisciplinary and multinational products, shown at the bottom of Table 2, is the International 
Vocabulary for Metrology, published in the name of the International Bureau of Weights and Measures 
(BIPM); the International Electrotechnical Commission (IEC); the International Organization for 
Standardization (ISO); the International Organization of Legal Metrology (OIML); the International 
Federation of Clinical Chemistry (IFCC); and the International Union of Pure and Applied Chemistry 
(IUPAC) (ref. 3). To these may be added several others of special import to accuracy and the analytical 
measurement sciences (ref. 4-6). 

Despite more than a century of progress, all is not well. As an illustration, Figure 1 shows arsenic results 
reported to the International Atomic Energy Agency (IAEA) by 16 laboratories participating in an 
intercomparison exercise for trace elements in environmentalbiological materials (ref. 7). (In fairness to 
the participants, we must point out that other sets of results -- e.g., for Cd -- were quite self-consistent.) 
Clearly, it is still appropriate to discuss the pursuit of accuracy from the perspective of the 'big' errors in 
analytical science, especially when difficult, trace level measurements are involved. Apart from the fact 
that the results in Fig. 1 span nearly 5 orders of magnitude, we observe that upper limits (labeled "detection 
limits") for non-quantitative results are found considerably below several of the quantitative results! Two 
questions present themselves: (1) To what extent is the illogical juxtaposition due to major analytical errors; 
and (2) to what extent is it due to faulty communication? We shall address the latter question in this 
section, especially in the contexts of data reporting, and the basic meaning of detection limits. 

Detection decisions and limits 
Although the detection limit constitutes one of the 
principal performance characteristics of a Chemical 
Measurement Process (CMP), and detection 
decisions are critical in many areas involving human 
health and safety, there is little uniformity of 
terminology, symbols, or even common meaning 
within the scientific community. A glimpse at the 
extent of the problem is given in Table 3, adapted 
from a recent overview of historical, societal and 
technical issues surrounding this topic (ref. 8). The 
problem is compounded by the fact that a number of 
the discrepant "official" definitions are employed for 
regulatory purposes and in communication with the 
public. Perhaps the most serious issue is the fact 
that the false negative (I3 error) is not explicitly 
recognized in several of the definitions, resulting in 
a de fact0 ratio of false negative (I3) to false positive 
(a) errors that ranges over a factor of 1000. A 
particularly insidious effect of varying and unstated 
definitions for detection limits is found in 
compilations of analytical method capabilities and 
low-level databases (ref. 9). The situation is not 
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Fig. 1. IAEA Intercomparison results for As in horse 
kidney (ref. 7). Intermingled "quantitative'' and non- 
quantitative results span approximately 5 orders of 
magnitude. 

dissimilar from that preceding the Karlsruhe Congress! Action within IUPAC to address the problem is 
underway, partly at the request of the CODEX Committee on Methods of Sampling and Analysis, as 
indicated at the bottom of Table 3. 
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Table 1. Karlsruhe 1860 (C. Priesner, 1989) 

0 'I... completely missing common understanding of 
the notions 'atom', 'molecule', and 'equivalent'. 
Because a common language of chemistry was missing, 
it was rather difficult to read and understand chemical 
publications." 

0 "One symbol of an element represented different 
atomic weights and for one substance quite a number 
of formulas existed. In 1859 August Kekul6 listed ... 
19 different formulas for acetic acid. Something had 
to happen ...I' 

The Karlsruhe Congress ... the initiative of Kekuli, 
Wurtz, Weltzien ... a predecessor for IUPAC 

Table 3. Detection Limit: Current "official" definitions 

LLD, IDL, LOD, co, I,,, c,, MDL 
fhgau&h NRC, EPA, ACS, IUPAC, IAEA, ... 
Definltlons: 2*BG, 3a, 30,, 3.290,, 2ts,, ... . . .  

a = 0.05% to 5% 
!3 = 5% to 50% [often ignored!] 

................................................ 

on Methods of 
[CODEX Alimentarius Commission, FA01 

- Request to IUPAC, August 1990, to consider 
the question of "Limit of Detection" and "Limit of 
Determination". (Deliberated by the Committee, sirice 
1982, for method selection.) 

Table 2. Nomenclature Guides 

IUPAC 

Physical Chemistry 
Organic Chemistry 
Inorganic Chemistry 

Analytical Chemistry 
321e Gold BMk. Compendium of Chemical 

Terminology 
........................................................................................... 

ylMr Intcrnational Vocabulary of Basic and General 
Terms in Metrology [BIPM, IEC, ISO, OIML, IFCC, 
IUPAC] 

Table 4. Detection -- the concept 

Dual Ouestions: 

Q1 - How little can be detected? 
Q2 - Has something been detected? 

0 Intuitive (sound experience, non-quantifiable) 
Ad Hoc (rigid formula; dictum, vote, ...) 

0 Signal/Noise (assuming white noise; Q2 only) 
0 Avoidance (small signals not worth considering) 
0 Hypothesis Testing (false positives & negatives) 

To develop a quantitative approach to the issue of detection in analytical measurement science, we must 
pose two basic questions. These are given in Table 4, together with some popular responses. The first 
question clearly relates to the inherent detection capability of the CMP in question, whereas the second 
relates to the recipe for making detection decisions. The first gives a measure of method performance, the 
detection limit; it cannot be answered in the absence of a formalism for answering the second question. 
Together, the two questions form the basis for the hypothesis testing formulation to detection. This is the 
best of the quantifiable formulations, for it recognizes both false positive and false negative errors, and it 
properly distinguishes the decision criterion (and the corresponding critical level) from the detection limit. 
The intuitive approach, of course, should not be discounted; sound scientific experience is invaluable for 
avoiding faulty assumptions which could too easily be incorporated in a simple mathematical expression. 

A simple illustration of the links among measurement precision, false positive (a) and false negative (a) 
errors, and a societal or regulatory problem is given in Fig. 2 (ref. 8). The fictitious relation in the upper 
part of the figure symbolizes the sociopolitical or socioeconomic generation of a maximum tolerable or 
regulatory level (LJ, here put in the context of earthquake (precursor) detection. The lower part indicates 
that the detection limit (b) of the method employed must not exceed b; where L is defined by the 
acceptable 13-error, the probability density function (pdf) for the observed net signal when the true net 
signal is b, and the critical level (Q for making detection decisions. L, depends in turn on the choice 
of a and the pdf for the observed net signal when the true net signal is zero. For simple detection -- with 
normal random measurement error; constant, known variance (d) over the range in question; and a and 
13 each equal to 0.05 -- L, = 1.645 o, and L = 2 L,., where (J is the standard deviation of the estimated 
net signal. (1.645 is the 1-sided critical value of the z-statistic. When (I is not constant, it is important 
to distinguish between u0 and 0, [ref. 81.) When d is estimated as s2, the factor 1.645 must be replaced 
by Student's-t for the appropriate number of degrees of freedom. in this case is more complicated, 
requiring use of the non-central-t, but it is approximately equal to 2to. (Since o is unknown, an interval 
estimate must be given for L in this case.) Further mathematical treatment is beyond the scope of this 
article; ref. 8 should be consulted for a more comprehensive discussion and review of the literature. 
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A summary of the most crucial, accuracy-related issues involving detection is given in Table 5. The first 
is the issue of common nomenclature. The second relates to the very important, difficult problem of 
communicating in this area with the lay public. The name "Delaney" which appears in Fig. 2 is an allusion 
to the Delaney Amendment to the U.S. Food, Drug, and Cosmetic Act. It has become symbolic for the 
mistaken view that zero concentration could, in principle, be detectable (ref. 8). The misuse of & and 
faulty reporting of non-quantitative data comprise the third issue in Table 5. Space does not permit a 
discussion of the reporting of low-level data, but incomplete or even biased reporting constitutes one of 
the most serious sources of information loss and distortion, especially in the transition from the laboratory 
to the public (ref. 8-10). The only guaranteed solution is to report the observed value and its uncertainty, 
even when the decision is "not detected. " The last issue is the big one. Mistaken assumptions, and failure 
to correctly and quantitatively take into account blank variability, and interference or matrix effects, can 
lead to completely erroneous results, for both non-quantitative and quantitative data. A very common 
oversight, in this regard, is the effect of interference on detection limits. 

Extension: discrimination and identification 
Accuracy in distinguishing between chemical species or pollutant sources, for example, is no less important 
than accuracy in detecting them. Fortunately, the very same principle, hypothesis testing, is applicable to 
both. A glimpse at the approach and application is given in Table 6 .  For the univariate case, rather than 

REGULATORY LEVELS (LJ AND DETECTION LIMITS (I.,,) Table 5. Most crucial issues 
MS 

SOCIETAL LOSS lo 

Adoption of a common, meaningful definition, 
encompassing both false positive and negative errors 

0.01 Communication to the Public that the null 
hypothesis (zero concentration or amount) is 
unprovable 

0 Application of & as a Performance Characteristic, 
not: 
- as a level for making detection decisions 
- as a quantity to be reported when results are 
"negative" 

Net 
sled A presumed may be totally inaccurate, without 

A t , L  attention to: 
Fig. 2. The link between regulatory limits (LJ and 
detection limits (b). Upper curve is dictated by 
societal needs; lower one, by measurement capability. 

- model and assumption validity 
- variability of the blank, interference, matrix effects 

comparing the observed signal for an unknown with 
that for the blank as in Fig. 2 (detection 
decision), one compares the observed magnitude of 
an identifying variable for an unknown with that for 
the standard (discrimination decision). Unlike 
detection where true signals may be continuous and 
tests are 1-sided, the identifying variable takes on 
characteristic values for the universe of possible 
substances, and tests are 2-sided. It is appropriate 
to speak of "identification" in contrast to 
"discrimination" when all possibilities (alternative 
substances) can be tested. Examples of identifying 
variables are: melting points, spectral wavelengths or 
energies, chromatographic retention times, and 
element or isotope ratios. As with detection, given 
normality and constant variance, Student's-t (2- 
sided), may be used for discrimination decisions and 
the non-central-t for establishing performance 

Table 6. Discrimination and identification limits 

Same principles apply when using an "identifying" 
variable (element or isotope ratio) rather than a 
"quantifying" variable (element or isotope amount) 

For multiple identifying variables (multivariate 
pattern recognition), the simple t-test is generalized 
by Hotelling's 
treated) 

(vector distance and covariance 

0 Illustrations from our current work: 
- Authenticity of drug formulations (proof of 

- Detection of excursions from an urban air 
"sameness") 

pollution signature (intruding, external air mass) 
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(discrimination) limits (ref. 8). Multivariate discrimination decisions must take into account covari- 
ance among variables; this is accomplished by the multivariate analog of Student's-t, namely Hotelling's-T2. 
It is given by 

where x and x, are the unknown and standard chemical (pattern) vectors, respectively, and S is the 
estimated covariance matrix. Critical values of T2 depend on degrees of freedom and the a-error. In the 
limiting case (multivariate normal, fixed covariance matrix), multivariate discrimination limits may then be 
constructed using also the B-error, and the non-central F distribution. Note that this parametric approach 
is just one of many for multivariate discrimination; a nonparametric (graphical) approach is presented in 
part 3 of the article. For an introduction to the vast literature on this topic, see refs. 11 (chemical) and 12 
(general). 
Some of the most serious errors in chemical analysis have arisen when the observed signals do not come 
from the presumed substance present. Major gains in accuracy have come from instrumentation and 
separation advances that have markedly improved identifying-variable resolution, thus reducing or 
eliminating such unsuspected interference. (See part 3 of this article.) In many cases this is not sufficient, 
especially when resolution is dictated by intrinsic sample variability. Then multivariate discrimination, or 
"chemical fingerprinting," becomes interesting. This is the situation for the two problems noted at the 
bottom of Table 6. A brief introduction to the first 
problem is given in Table 7, which highlights the 
importance of the problem of drug authenticity, and 
the planned approach, using chemical fingerprinting 
(ref. 13, 14). We conclude this section with a 
glimpse at the multivariate discrimination of a 
characteristic urban air mass from samples of 
intruding or otherwise contaminated air. 
Table 8 contains isotopic and chemical data from a 
study of air pollution sources in the small town of 
Elverum, Norway. The motivation for the study, 
discussed in ref. 15, was to apportion quantitatively 
wintertime aerosol carbon pollution to fossil and 
woodbuming sources. That was accomplished with 
univariate discrimination, using the isotope ratio 
14C/12C as the discriminating variable. (f, in the 
table indicates the percent of woodbuming carbon, as 
deduced from the isotope ratio.) We now wish to 
ascertain which of the samples are characteristic of 

ELVERUM - -  Urban Cluster 
(X 10000) Alpha - 0.05 

4 

3 

B 
f a  

m 
H 

1 

0 

6 a 10 l a  1. 16 18 

observation 

Fig. 3 "Urban plume" test. The 7 samples 
onbelow the dotted line are consistent with the urban 
signature; the 5 above, are not. Individual patterns are 
displayed as 7-pronged glyphs. 

Table 7. Drug formulation authenticity 

The: Small changes in storage, production, 
or even trace contaminants in inactive ingredients, can 
produce life-threatening effects. 

m: An arthritis medication (isoxicam) was 
associated with deaths from Lyell's Syndrome, but only 
in France. A $6 million investigation eventually 
proved that a "minute, unseen contaminant" induced a 
severe immune system reaction. It was discovered that 
the contaminant came as an unknown byproduct during 
synthesis at the plant supplying the product for the 
French market (ref. 13). 

Solution: The U. S. Food and Drug Administration 
has launched a "scientific fingerprinting" program, 
using a vast array of analytical and computational 
techniques, to detect trace and ultra-trace deviations 
from authentic drug patterns (ref. 14). 

Table 8. Multivariable particulate data: Elverum, 
Norwaya 

Sample f, C K Pb Fe SO4 Mn V 

6 63 15 121 263 20 730 4 1 
7 78 50 424 607 33 1540 6 1 
8 64 30 328 497 62 1620 10 2 
9 64 9 197 213 27 2710 4 , 5  8 
10 32 5.1 218 54 33 2800 6 6 
11 
12 
13 
14 
15 
16 
17 

62 
54 
65 
83 
67 
26 
61 

6.9 140 
12 179 
26 246 
22 231 
25 245 
11 339 
10 99 

160 72 
262 57 
547 179 
325 56 
419 110 
94 150 
70 59 

2320 6,5 14 
910 4,5 2 
1300 8 2 
1490 2.5 2 
1410 4 2 
5340 15,5 17 
310 2 1 

'Units: f, k rcent  woodcarbon); C (pg/m3); all 
others (ng/m3) 
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the wintertime polluted air and which are different. The problem is thus completely analogous to the use 
of chemical tracers or chemical patterns to identify an "urban plume" or to identify a "re ional 
signature" (ref. 16). Carbon normalized patterns were used for the multivariate test, the results ofwhich 
are given in Fig. 3. The figure was constructed using "prior estimates" for x, and S (for didactic purposes), 
and the following glyph code. 

Mn 

V 

The result is that 7 of the 12 samples are consistent with the assumed pattern for the urban plume. The 
last two samples are especially interesting, in that they were collected at the same, nearby background site. 
The very different glyph (chemical) pattern of sample 16 indicates a near absence of the urban aerosol 
species, woodcarbon and lead, and an abundance of elements that might be associated with coal burning 
(absent from the town). Independent meteorological data showed this sample to be associated with long 
range transport (ref. 15). This example highlights another very important point, regarding model accuracy. 
That is, unless the data being modeled, statistically or mechanistically, belong to a homogeneous subgroup, 
erroneous conclusions can follow (ref. 11, 17). In a sense, sample 16 is a multivariate outlier, which cannot 
be modeled correctly with multivariate patterns of sources that are indigenous to the town of Elverum. 

ASSUMPTIONS AND STANDARDS 

Two essential activities in the pursuit and control of analytical accuracy are: (1) attention to the nature and 
validity of assumptions employed in sampling, measurement, and data evaluation; and (2) judicious use of 
appropriate standards to expose faulty measurements or faulty assumptions. There are at least 4 classes of 
standards that are relevant to these endeavors: Standard Reference Data (SRD), Standard (or Certified) 
Reference Materials (SRM), Standard Test Data (STD), and Standard Field Studies (SFS). SRD and SRM 
(or CRM) are generally available from national or international standards laboratories; they provide a 
common basis for critically-evaluated physical and chemical properties, and expertly-characterized physical 
and chemical materials, respectively. Accuracy, including exhaustive assessment of uncertainties, is a 
keyword in such evaluation and characterization, because the data and materials serve as the foundation for 
accuracy in analytical measurement science. The scope of SRD and SRM may be seen, for example, from 
catalogs available from NIST (ref. 18). STD represent a relatively new means to assure accuracy in 
analytical data evaluation. These data are designed to simulate actual analytical data (signals), but they are 
created with fully-known characteristics. The last category SFS differs from the others, in that it is not 
a product that can be obtained from a standards organization. The impact of SFS on the assessment of 
modeling accuracy of physicochemical processes occurring in the "field" (complex real systems) can be 
considerable, however. A recent illustration is the ANATEX study in which the accuracy of a number of 
atmospheric chemical transport models was evaluated in an experiment spanning three months and 3000 
km. The evaluation was accomplished using known releases of several perfluorocarbon tracers plus 
downwind monitoring over a grid of 77 stations (ref. 19). 

Structure of the chemical measurement process (CMP) 
The relevance of SRM, STD, and assumptions to analytical accuracy can be conveniently discussed with 
the aid of a diagram portraying the main components of the CMP (Fig. 4). The input and output of the 
CMP are, respectively, samples and results. The former have unknown composition, denoted x (scalar for 
single sample, single component; vector for single sample, multicomponent); the latter consist of estimated 
(measured) concentrations and uncertainties. Within, the CMP box contains sample preparation and 
instrumental measurement steps that yield a signal y, and a data evaluation step that operates on the signal. 
The internal structure may or may not be transparent to the operator. An SRM serves to test the quality 
of the overall CMP, whereas the STD test the data evaluation step by injecting simulated signals having 
known characteristics. The latter type of standard is of increasing importance for the assessment of 
algorithm accuracy, with the continuing trend toward automation and hidden or proprietary software. The 
simplest possible analytical model is shown below the diagram. 
The CMP is generally imbedded in a larger (biological, environmental) system that we wish to characterize 
or control. Sampling is the critical link between the two, and as such, it often provides the greatest 
opportunity for imprecision and bias. Unfortunately, SRM use is usually restricted to the post-sampling 
phase of analysis. Some problems in sampling, such as heterogeneity, an inadequate sampling plan or 
design, losses, and contamination are well appreciated by chemists. Other problems, however, require 
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multidisciplinary expertise for their revelation. An eloquent discussion of this point has been given by 
Iyengar, in the context of biological trace element research (ref. 20). Iyengar's point is that sampling must 
be both biologically and analytically valid, and that complementary expertises are required to achieve such 
an end. A classic unidisciplinary pitfall in this regard is the analysis of analytically-convenient, but 
potentially biologically-misleading, whole blood samples for selected trace elements. For example, based 
on whole blood, the activity of the selenoenzyme glucathione peroxidase was found to be lower in pregnant 
rats; yet, when based on hemoglobin, it showed no significant difference (ref. 21). Bias and imprecision 
result from insufficient or non-representative sampling. The large scatter of trace element dietary data for 
just one of three countries, shown in Fig. 15 (part 3 of this article), has been attributed to such deviations 
from the sampling protocol. 

Model error, like sampling error, will lead to erroneous conclusions. Table 9 captures some of the potential 
assumption pitfalls in applying the simplest CMP model, by contrasting Nature's model with "our" model 

Table 9. Models and assumptions 

CHEMICAL MEASUREMENT PROCESS 
[y = Signal B = Blank x = Analyte amount] 

IUu&&M& y = f(B, q, A, x) t e 
(@ @ 

y - B t CAx t e' [sum: 1 to q'] 
y :  E + A x + e y  

y = signal 
B = Mank 

A = sensitivity 
e, = measurement error 

- - : assumed linear model 
Fig. 4. Schematic diagram of the Chemical 
Measurement Process. 

- B :  assumed blank 
- 9': assumed no. and identity of components 
- A:  assumed sensitivity matrix 
- e': assumed error distribution (also: blunders) 

for the signal-composition relationship. The latter treats this relationship as linear, with simple additive, 
(normal) random errors. Errors in B are assumed random and are propagated, and errors in A are assumed 
negligible. Furthermore, the identities and number of components are assumed known. Excellent methods 
exist for testing assumptions -- though such methods themselves rest on assumptions; and special 
statistical/numerical techniques exist for treating non-normal error, random error in the sensitivity matrix, 
and non-linear models (ref. 11, 22). Unfortunately, "our" model is at best an approximation of Nature's, 
and some of the special statistical/numerical techniques are misunderstood or misapplied in chemistry, 
leading to a false sense of security (ref. 23). In the end, every erroneous assumption or model is manifest 
as systematic error. That error component, of course, cannot be estimated by replication, yet realistic 
bounds for systematic error are crucial for a meaningful estimate of uncertainty. One route to estimating 
the systematic component of uncertainty, within the capacity of all expert analytical scientists, is exhaustive 
scientific analysis of the measurement process. Another is comparison with standards and comparison 
among methods or laboratories. 

Standards and testing of assumptions 

Interlaboratory and intermethod comparisons provide an excellent means for checking comparability; if an 
SRM is used, or if a method or laboratory can be considered "definitive", then accuracy also may be 
assessed. Important guidance in these areas has been given by international standards organizations (ref. 
5, 6). One of the simplest, yet most important techniques for assessing interlaboratory accuracy is the 
Youden plot (ref. 24). By making a scatterplot for pairs of measurements (x, y) of equivalent samples by 
multiple laboratories, one can instantly discern systematic and random components of interlaboratory error. 
This is one of the earliest methods of statistical graphics, which has recently become so popular and so 
powerful. A useful extension of the Youden 2-sample method has been given by Meglen, for quality 
control (ref. 25). Quality is monitored by plots of sums and differences, plus the scatterplot, now containing 
a time marker. 
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A summary of SRM and STD applications is given 
in Table 10. One important illustration of SRM use Table 10. SRMy STD APPlications 
is the detection of bias. A document including the 
treatment of bias detection decisions, bias detection 
limits, and bias confidence intervals has been Use of Standard Reference Materials 

prepared recently by NIST (ref. 26). Bias detection 
is similar to analyte detection; the same hypothesis 
testing principles apply. A small difference is that 
bias can be either positive or negative, so a 2-sided 
test is appropriate for bias detection decisions. The 
detection limit for bias (a, 13 = 0.05) is 3.60 u/Vn for 
n-replicates, where u is the known standard 
deviation of the method being tested for bias. The 
limit increases if the SRM uncertainty is not 
negligible, or if u is estimated (as s). Thus, bias 
detection is not easy unless the bias is considerably 
larger than the method-a. Complementary 
estimation of bias bounds through exhaustive 
scientific analysis of the measurement process is 
therefore strongly recommended. 

- Calibration; internal, external quality assurance 

d deve- . .  
- Development of reference test methods 
- Bias detection; method validation 

Use of Standard Test Data 

and v&&.u&&a . .  evalu&mAep 
- Detection of errors in modeling, computation, 

- Algorithmic improvement 
uncertainty estimation 

STD have been deemed sufficiently important for computational quality control that the IAEA regularly 
includes a set of simulated gamma ray spectra in its CRM catalog (ref. 27). The spectra, having known 
peak and error structure, are designed to test peak detection, resolution, location, and quantification 
algorithms. When first introduced, as unknowns, these STD produced surprising results in an 
intercomparison involving some 200 laboratories (ref. 28). For example, the peak detection exercise 
(Fig. 5 - test spectrum no. 200) had the remarkable conclusion that, despite the application of several 
sophisticated computer techniques, a "visual" method produced the best result -- 19 true positives and 0 
false positives, given 22 real peaks. Computational techniques produced abundant false positives (up to 
23) perhaps because of failure to take into account the effect of multiple null tests (ref. 8). 

One important implication of the outcome is the value of expert "vision" for the exploration of complex 
data, suitably presented. (See part 3 of this article.) 

2 00 

I 

Fig. 5 .  IAEA y-ray STD for testing detection algorithms. Inset (ref. 29) shows a peak detected by half the 
participants. Best result ("visual") found 19 (of 22) peaks, with no false positives. 
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Creation of realistic STD for measurement science 
has continued. Multivariate analytical data prepared 
to assess the accuracy of aerosol receptor modeling 
methods also led to surprises, in an intercomparison 
exercise (ref. 30). Fig. 6 shows, for example, 
absolute normalized deviations from the "truth" for 
3 similar (chemical mass balance) methods. Had the 
deviations been consistent with random normal error, 
roughly half of the results from each group would 
have fallen above and below the horizontal median 
centerline. A conclusion was that only 1 of the 3 
laboratories gave realistic (accurate) uncertainty 
estimates, the others giving serious under- or over- 
estimates (ref. 29). Currently, at NET, there is a 
major project to develop test data for software 
performance evaluation of automated coordinate 
measuring machines (ref. 31), and a new project to 
develop STD suitable for spectroscopic or 
chromatographic methods and instrumentation 
incorporating significant computational steps. The 
need for this aspect of analytical quality control is 
likely to increase with the increase in multivariate 
"black boxes" possibly incorporating questionable 
assumptions. 

Normalized Deviations 
vs Source 

0.01 1 ,  , , , , , , , , , , , , , , 

0 3 6 9 1 2 1 5  

Source Number 

Fig. 6. Receptor modeling STD - absolute, normalized 
deviations from the "truth". Only 1 of the 3 Labs (t) 
was consistent with the expected median (horizontal 
centerline). 

(R)EVOLUTIONS I N  MEASUREMENT SCIENCE 

Major changes affecting accuracy 
The conduct of Analytical Science has been profoundly affected in recent decades by fundamental 
developments in at least three areas: sampling, measurement technology, and computation. Progress in each 
of these areas has had broad impacts on our discipline, including such practical matters as the cost and 
speed of doing business. The revolutionary impact that is pertinent to this text, however, is the impact on 
accuracy. This comes about largely because innovations in the three areas have made it possible to sample 
the previously unsampleable, measure the previously unmeasurable, and compute the previously 
uncomputable. As a result, direct information may now be obtained for problems that previously depended 
(in part) on assumptions for their solutions. 

Since it is impossible to treat adequately the accuracy-related developments in the above areas in the space 
available, I shall limit my remarks to some brief comments on sampling, plus slightly more extensive 
discussion and illustrations from one of the advances in each of the other two areas. One of the most 
interesting and important developments in sampling in the past two or three decades has been the 
remarkable progress in capabilities for sampling astronomical bodies, including the planet earth and its 
moon. Accuracy of our knowledge of lunar composition naturally took a quantum leap, once actual samples 
were retrieved. Prior to that our knowledge was limited to indirect inference, derived from meteorites, 
radiation, and theory. The accuracy of arguments set forth by Harold Urey, based heavily on 
thermodynamic and geochemical principles, was remarkable. Lunar students would do well to study his 
work of the 1950s (ref. 32). The lunar sampling program was initiated with the landing of Apollo 11 in 
1969; we shall return to this briefly in connection with an important "visual metaphor." The ability to 
retrieve samples, to perform in situ measurements or to remotely sense the composition of the stratosphere, 
deep sea sediment, and polar ice cores, for example, has led to enormous improvements in the accuracy of 
our knowledge of these environmental "compartments" -- an area that constitutes one of the major new 
foci of IUPAC (ref. 33). Such compositional information is crucial for understanding the chemical history 
of the earth and its atmosphere, monitoring current changes, and forecasting. Perhaps the most dramatic 
recent example is the discovery of the "ozone hole"; prior views on the mechanisms and rate of destruction 
of stratospheric ozone were shown to be quite incomplete (ref. 34). 
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Measurement advances - accelerator mass spectrometry (AMS) 

No less dramatic than the advances in sampling, are those involving new concepts in measurement, new 
technology, and automation. To illustrate the impact on accuracy, I shall discuss just one such 
development, the invention of Accelerator Mass Spectrometry (AMS). A M S  was originally conceived and 
applied to the analysis of mass-3 nuclei by Luis Alverez in 1939 (ref. 35). It was re-discovered in 1977, 
more or less simultaneously by one group working with a cyclotron (ref. 36) and one working with a 
tandem accelerator (ref. 37). The invention of AMS constituted a revolution in mass spectrometry because 
it made possible the direct measurement of atoms (ions) of long-lived radionuclides which previously could 
only be analyzed by counting their decay products. 

The "AMS Advantage" is illustrated, for I4C? 
in Table 11. (TO date the largest application 
of AMS has been the measurement of 
radiocarbon, with applications to archaeology, 
geochronology, biomedicine, oceanography, Counts = Atoms Efficiency .. (O.O1) 
environmental studies. and eeologv.) The 

TABLE 11. The AMS Advantage 

0 Accelerator Mass SFctrometV counts atoms: 

Radioactivity measurement counts decays: " "a I 

'ladvantage," a factor Of lo4 for 14', Counts = Counting Tirne Atoms / Mean life = t N / can be interpreted as a relative increase in 
signal (counts) for a given sample size, or a 
relative decrease in requisite sample size for 
a given counting precision. The latter has 
had major impact, for it has opened the field 
of radiocarbon research to previously 
unmeasurable sub-milligram carbon samples 
and/or chemical fractions. 
Table 11, the "advantage" is directly proportional to the half-life (or, mean life t which equals 

0 AMS Advantage: [(0.01) z ] / [ t ] 
For C-14 (t = 1 day, z = 8266 years), this equals 30,000 

But, one must measure isotope ratios (14/12) down to W6 

The impact of AMS on longer-lived nuclides is even greater. As shown in 

half-lifeAn2). The consequence for "Be (z = 2.3 
x lo6 yr) and 36Cl (z = 4.3 x lo5 yr) has been to 
create two new fields of geochronology, with 
extensive ramifications in environmental and 
geochemistry, geology, and geophysics (ref. 38). 

Before discussing some specific impacts of AMS 
on accuracy in analytical science, it will be useful 
to glance at the technology. The bottom line of 
Table 11 shows that the utility of the method 
requires it to go far beyond the isotope ratio 
capability of conventional mass spectrometry, 
which is limited to ratios of perhaps lo-'' due to 
molecular ion interference. (Note that biospheric 
["living"] radiocarbon has a l4C/I2C ratio of about 
1.2 x 10-l2.) The enhanced capability of AMS 
depends on unique means for markedly reducing 
both molecular ion and isobaric ion interference -- 

Fig. 7. Photograph of the University of Rochester 
tandem accelerator. 

using techniques borrowed from nuclear physics research. This is illustrated in Figures 7 and 8. 
The first figure is a photograph, taken by the author, of the 12 MV model MP tandem Van de 
Graaff accelerator at the Nuclear Structure Research Laboratory at the University of Rochester, where the 
first tandem 14C experiments were performed (ref. 37). The photo shows the main acceleration chamber, 
where low energy ions enter at the right and high energy ions exit at the left of the figure. The second 
figure is a schematic plan of the tandem accelerator at ETH in Zurich (ref. 39). Carbon samples, in the 
form of elemental or graphitic carbon, are placed in the Cs' sputter ion source (upper left of the diagram), 
where negative atomic and molecular ions are produced. The negative ions are accelerated to 40 keV and 
magnetically mass analyzed before entering the main acceleration chamber. Ions further accelerated by a 
potential of 4.5 MV impinge on a gas stripper where molecular ions are destroyed by the "coul6mb 
explosion." The 4.5 MV potential then acts again on the resultingpositive, atomic ions, resulting in 18 
MeV C3 at the high energy end of the machine. Electrostatic and magnetic mass analysis of the high 
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Fig. 8. Schematic diagram of the A M S  dating facility at ETH (reprinted from ref. 39 with permission of 
RADIOCARBON, New Haven 0. 

energy ions is followed by isobar resolution by two parameter (ionization density, energy) spectrometry. 
The key to both molecular ion and isobar resolution is the megavolt accelerating potential. An added 
benefit for I4C accelerated as a negative ion, is the instability of N-, which essentially eliminates 14N 
isobaric interference. 

. .  AMSaDDllcatlons. Major advances in a number of disciplines have occurred as a result of experiments that 
were previously impossible or impracticable. New ground has been broken both for radionuclide analysis 
and for ultra-trace element (isotope) analysis, for both benefit from the freedom from molecular ions. 
Some classes of applications, drawn from the continuing series of International Conferences on Radiocarbon 
(ref. 40) and Accelerator Mass Spectrometry (ref. 41), are given in Table 12. 

Regarding our central topic, accuracy, the 'oBe/36Cl "failure" demonstrated that assumptions about the 
atmospheric transport of these nuclides were invalid (ref. 42). Subsequent research suggests an interesting 
link between 36Cl production and transport in the stratosphere and heterogeneous chemical processes, such 
as those associated with the "ozone hole" (ref. 34, 43). Inaccuracy, related to faulty assumptions or 
unsuspected contamination, has been enormously reduced for I4C studies. For example, the ability to date 
extremely small (submilligram) samples of carbon has made possible the accurate dating of ancient buried 

Table 12. Some AMS applications (many more) 

Successes 
C-14 [t,: 5730 yr] - Absolute, unique tracer for 
environmental carbon; Validation of elemental & 
molecular tracers 

Be-10 [t,: 1.5 x lo6 yr] - Cosmic ray history of 
meteorites and the earth's atmosphere 

C1-36 [t,: 3.0 x 10' yr] - Ground water dating 
(nuclear waste isolation) 

Ultra-trace elements - trace impurity microanalysis 
of high purity metals and electronic materials 

"Failure" 
Be-10/C1-36 Geochemical Clock (polar ice cores) 
(Failure turned into stratospheric chemistry success) 

0 2 4 6 8 

sample order (time) 
fores t  ( - ) ,  urban ( - - I  

Fig. 9. Biospheric contribution to aerosol carbon for 
rural (solid) and urban (dashed) regions, based on 14C 
measurements (ref. 45). 
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bones through AMS analysis of individual amino acids isolated from large amounts of contaminating (non- 
contemporaneous) carbon (ref. 44). Similarly, 14C "dating" of atmospheric aerosol particles yields 
assumption-free apportionment of pollutant carbon. Unlike assumed source/transport models, or non- 
absolute indirect tracers (e.g., Pb and K), I4C gives a direct and absolute apportionment of 
fossillbiospheric carbon. The impact is illustrated in Fig. 9, where 14C measurements generated two 
"surprises": (1) in the forested region (Shenandoah Valley) high levels of pollutant sulfate led to the 
(faulty) assumption that the aerosol carbon would be fossil; (2) in the urban region (Houston), the 
assumed emissions inventory contained only fossil carbon. A M S  14C measurements showed that both 
assumptions were wrong. In the first instance, gas (SO2) vs aerosol (C) transport differences are likely 
the culprit; in the second, long range transport 
appears to have introduced biospheric aerosol 
carbon from agricultural burning (ref. 45). 

Data exploration and visualization 
The revolution in computational capacity has 
benefited analytical accuracy in at least three 
broad areas: simulation-modeling of complex 
physicochemical processes (ref. 46); computer- 
intensive estimation of precision and bias 
(ref. 47); and the graphical representation of 
multivariate analytical data. Only the last, 
popularly known as "statistical graphics," will 
be discussed here. 

The significance of "visual" data exploration 
was demonstrated already in the previous 
discussion of Standard Test Data, where the 
expert visual search for subliminal gamma ray 
peaks proved more accurate than the most 

Table 13. The 8 rules of exploratory data analysis 

1. Plot the data [visualization] (Filliben) 
2. Remove what you know (Tukey) 
3. Examine what remains from every possible perspective 

(Filliben, Shaler) 
4. Outliers are generally present: ANOB (Currie) 
5. df = observations - parameters c 0, always; 

- Scientific Intuition is essential (Currie) 
6. Perform subset analysis (Filliben); 

- Be alert to data heterogeneity (Currie) 
7. Univariate - multivariate exploration (Filliben) 

- Understand low-dimensional structure first 
- But be aware of new, multivariate perceptions 

8. Use Real Variables (RV) and Principal Components (PC) 
-RV: Outlier resistant; interpretable 
-PC: Efficient display of multivariable space 

ANOB = Analysis of Blunders 

sophisticated computer algorithms employed. More recent advances in the visual representation (ref. 48) 
and visual exploration (ref. 49) of complex data have greatly enhanced our ability to look and think about 
possible meanings, without the constraint of a rigid, pre-conceived, possibly erroneous model. In other 
words, visual data exploration is "robust" and admits the possibility of discovering unsuspected relationships 
and unsuspected blunders. A set of guidelines, to be illustrated later, is given in Table 13. The 8 rules in 
this Table grew out of a set of 7 presented in ref. 50, where a more detailed discussion may be found. 
They might be further expanded by adding a 9th rule: that statistical tests will generally be no more 
powerful than visual tests of data, appropriately displayed. Regarding the first three rules: Rule 1, offered 
by James Filliben, creator of the graphical data analysis package DATAPLOT (ref. 49), is at the heart of 
exploratory statistical graphics. Rule 2, from John Tukey of Exploratory Data Analysis fame (ref. 51), 
symbolizes the initial step in graphical residual analysis. Rule 3 captures the basic meaning of exploration, 
for any field; it is the key to discovering unsuspected structure as well as possible mistakes or blunders. 
The reference to Nathaniel Southgate Shaler, an eminent 19th century Harvard geologist, is appropriate 
because of his method of opening the minds of young students. He would present a student with a rock, 
as in Fig. 10, and require him to submit the results of all possible (visual) observations on the rock. After 
"all possible" observations were made, Prof. Shaler would direct the student to repeat his efforts, again and 
again, in the effort to discover still more -- a superb educational technique. 

The rock pictured in Fig. 10 has a dual role in this section. It is, in fact, a lunar sample retrieved in the 
Apollo 11 mission, and sent to Brookhaven National Laboratory for exploratory chemical analysis of 
trapped noble gases. Thus, it is archetypical of the revolution in sampling, noted at the beginning of this 
section. The photo is offered also as a visual metaphor, to draw an analogy between the detailed 
exploration of a physical object and the detailed exploration of a data "object"; in both cases, the goal is 
discovery and understanding of the underlying structure. To complete the analogy, a data object that will 
be the subject of the remainder of this section is portrayed in Fig 11. In the case of the lunar rock, cursory 
visual examination reveals a heterogeneous structure, which suggests the value of deeper exploration. Also, 
the Brookhaven plan, to "look at" trapped noble gases, exemplifies the use of appropriate chemical 
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Fig. 11. 3D section of 5D compositional data from the 
Fig. 10. Photograph of Apollo 11 lunar sample #lo057 I k A  Daily Diet Study. The plot shows only a 
(Brookhaven National Laboratory, Oct. 1969, courtesy 
of R. Davis, Jr.) 

portion of the total (6300) 5D data. Concentrations (z) 
are median-normalized. 

instrumentation to extend the reach of normal human vision. Both issues carry over to exploration of the 
multidimensional data object. That is, we ask at the outset: (1) whether the data object contains non-random 
structure, and whether it is heterogeneous; and (2) what data visualization methods may be employed to 
extend our view beyond the simple 3 dimensional plot in Fig. 11. Still another analogy exists, that is 
central to our topic; namely quality -- the quality of the lunar sample, and the quality of the 
multidimensional data. The two issues, data structure and data quality (accuracy), are the foci of the case 
study that follows. 

The three dimensional (3D) "object" in Fig. 11 represents a 3D section (or slice) of a 5D structure, the 
remaining dimensions being laboratories and analytical methods. (For simplicity of presentation, only 40 
of the 240 samples and 5 of the 25 elements, with median-normalized concentrations ranging from 0.084 
to 4.36, have been used to construct the figure.) Sectioning (and projecting) are key exploratory tools for 
a data object, just as they are for a physical object. This will become apparent as we illustrate visual 
approaches (Table 13) to assess the structure and quality of this relatively complicated, multivariate 
chemical dataset. 

Case study: The IAEA Coordinated Research Pro9 amme on D d v  Dietary Intak es. The data represented 
in Fig. 11 derive from an international project, initiated by the International Atomic Energy Agency ( M A )  
in 1985 (ref. 52), involving the analysis of minor and trace elements plus fiber, phytate and energy in daily 
diets of 20 population groups in 11 countries. Up to six analytical methods have been employed; and data 
quality has been monitored by reference samples, plus tri-laboratory measurements. Our illustration of 
computer graphics for accuracy-related data exploration is drawn from a somewhat broader study of the 
data (ref. 53). It represents a concrete example of 
the exploratory approach using some of the 
compositional data. It does not treat dietary intake, 
per se; and it must not be construed as 
representative, as the database was incomplete. 

In viewing the compositional data, we shall 
consider 3 characteristics: structure, heterogeneity, 
and blunders. Possible differences between and 
among groups will be of interest, as well as the 
dimensionality of structure and blunders. Fig. 11, 
which presents "a plot of the data" [rule 11, 
represents a beginning, but instant visual insight for 
so complex a dataset is not so facile as in the case 
of the gamma ray spectrum (Fig. 5). Examination 
of selected uivariate plots , keyed to countries and 
subgroups is a good next step [rules 6, 71. Fig. 12 
shows global frequency histograms for 3 
characteristic elements: Zn (essential), Hg (toxic), 
and Se (essential, but toxic at higher 
concentrations). Median concentrations are 21 
mg/kg, 24 pg/kg, and 116 pgkg, respectively. It is 
immediately apparent that the data are not 
homogeneous: the distributions are amroximatelv 

I. & ' i 

E 
E 

0 100 ZOO 300 400 SO0 

Se olg/kg) 

Fig. 12. Global frequency histograms for Zn, Hg and 
Se (70-86 samdes and 7-9 countries. each). 
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normal, lognormal, and bimodal, with some 
suggestion of outliers. The next step in a scientific 
investigation would be to enquire as to the reasons 
for the different distribution types. Although a 
normal distribution might be expected for a 
bio-regulated (essential) element, and lognormal, 
for a non-essential environmental contaminant, 
these questions deserve expert multidisciplinary 
investigation (ref. 54). 

Greater insight can be gained by examining 
subgroup distributions; conveniently accomplished 
with multiple box plots (Fig. 13). Here, a generally 
dichotomous character for Ni concentrations is 
observed, with higher and more disperse 
concentrations obtaining for Iran and Turkey, which 
have vegetarian diets. There is little evidence, 

Multiple Box-and-Whisker Plot 
(N dhtbullon vs Grwp) 

1.2 

I A  

lU- I 

however, of intra-regional differences. This figure 
contains also evidence of serious outliers, in 
population groups 10, 11, and 15. In the 

Fig. 13. Ni distributions. The boxes 
interquartile ranges and medians, 

the 

multivariate graphical exploration that follows, we 
shall gain some clues as to whether such outliers 
represent unusual samples,  laboratory 
mistakeskontamination, data entry errors, etc. 

Unlike Ni, some elements do exhibit intra-regional heterogeneity. For example, phytate is considerably 
higher in the daily diet of a wheat eating, rural population group in China than either a rice eating, rural 
group or a group from Beijing. Similarly, differences are manifest in the concentrations of many of the 
elements in two Italian population groups -- one from a mountainous area with a traditional diet (IT-2), 
and one from an area having a high seafood diet (IT-3). This is illustrated in the last univariate plot, 
Fig. 14. We make two observations: (1) that As concentrations for group IT-3 are considerably higher than 
those for group IT-2; and (2) samples b and j  differ greatly from other members of their respective groups. 

Moving on to 2dhamms ' [rules 6, 71, we next examine a bivariate Zn-Se plot for food samples from 
Iran, Spain and the US. (Fig. IS). Three types of discrepancy occur in this case: (1) Sample A ,  which 
deviates greatly from the Iranian cluster, was confirmed by two laboratories -- hence, it is a "sample 
outlier", rather than a laboratory or data entry error. The fact that the outlier is bivariate is important; it 
means that "simple" reagent contamination or data entry (apart from mislabeling) is not the cause. 

Unlvaliate Plot - Gmups IT-2, IT-3 
vs sample) 

10 

43 45 47 4s 51 53 55 

Sample 

Fig. 14. Univariate plot of As for daily diet samples 
from Italy -- population groups IT-2 (o), IT-3 (0). 
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Fig. 15. Bivariate Zn, Se plot for daily diet samples 
from Iran, Spain, US. 
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(2) Sample B gave discrepant results between two 
laboratories; the diagnosis must be at least a 
laboratory error, possibly also a sample error -- 
reanalysis is in order. (3) The scatter (imprecision) 
exhibited by the Spanish samples (t) is surprising 
in view of the Iranian and U.S. data; there is some 
question as to the quality of the sampling protocol. 
It should be emphasized that this exercise is 
exploratory; except for interlaboratory 
discrepancies, unusual sample results are not 
necessarily wrong. Rather, they merit further 
investigation. 

Enlarging our view to * [rules 6- 
81 is still more informative. Fig. 16 shows Zn 
results from 3 laboratories for a common set of 
samples. This figure represents the extension of 
the "Youden Plot" concept, for the assessment of 
interlaboratory quality, to the multilaboratory - 
multisample (multivariate) regime (ref. 24, 50). 
The data are plotted as a conventional 3D real 
variable (RV) plot in the lower part of the figure, 
and as a principal component (PC) plot in the upper 
part. Both plots show immediately that one result 
(A) is outlying; the PC plot shows instantly the 
corresponding laboratory (R). This figure makes a 
good bridge between RV space and PC space. PC 
projections provide the most efficient lower 
dimensional view of multivariable space; in this 
case we see the best projection of the 3-laboratory 
data on a plane (ref. 11). 

PC plots are especially valuable beyond 3 
dimensions, as in Fig. 17. Here, data for the 4 
toxic elements for Italian groups IT-2 ("traditional 
diet") and IT-3 ("high seafood") are projected on 
the PC1, PC2 plane. This type of plot allows us to 
quickly spot outliers, data heterogeneity (clusters), 
and linear relationships using all samples and all 
(4) variables. We see, for example: (1) An 
extremum; sample4 lies isolated at the tip of the 
Pb vector, implying a serious outlier. In fact, the 
Pb concentration in this sample exceeds that of all 
others by a factor of 100; a result confirmed by all 
3 laboratories. (2) A mismatch; sample-j falls 
within the "wrong" group, as it did in the univariate 
plot (Fig. 14). (3) A discrete separation between 
the two population groups, IT-3 concentrations 
exceeding those of IT-2 for As, Hg, and Pb. (4) A 
more or less linear pattern at least for IT-2, which 
seems related to the Cd and Pb variables. ( 5 )  
Correlation between Cd and Pb, suggesting that we 
examine the corresponding 2 dimensional RV plot 

PCA Biplot 
(Interlaboratory, Zn Data) 

2.1 

-3.51,. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 
-3.5 -2.1 4.7 0.7 2.1 3.: 

PC1 

[rule 81. That plotis given in Fig. 18. 

Trivariate Interlaboratory Plot 
(Zn [mgncgl) 
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Fig. 16. PC (upper) and RV (lower) plots of Zn 
interlaboratory data. Labs I ,  B and all samples except 
A align with the 1st principal component. 
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Fig. 17. Toxic element PC plot for Italian groups IT-2 
(o), IT-3(.). Circles represent samples; vectors 
represent elements. 
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This last figure is very interesting indeed. With the 
exception of sample-j, which is precisely in the 
wrong population group, the two groups display 
unique linear relationships, such as would be 
manifest in 2-source (environmental) mixing 
processes. The scatter about the lines is consistent 
with measurement error, and far smaller than the 
overall dispersion. Thus, this small example has 
demonstrated how graphical multivariate exploration 
can lead to explicit answers to our initial questions 
about data structure, data heterogeneity, and data 
quality. Also, it illustrates that eventually we run up 
against rule 5, when a large dataset (here, 6300 
observations) with rich and interesting heterogeneity 
is decomposed into homogeneous subgroups. 

Some final comments: (1) Further exploration 
showed sample-j to be in the wrong group for all 
variables -- it must have been mislabeled. (2) 
Selecting the right RV plot (Fig. 18) was not a 
matter of chance; the insight came from the PC plot 

Bivaliate Plot - Groups IT-2, IT4 
(r 100) 
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Fig. 18. RV-plot of Pb vs Cd, for population groups 
IT-2 [o] and IT-3 [o]. 

(Fig. 17). Similarly, an 8dimensional PC plot of essential elements for groups IT-2, IT-3 led to a linear 
relation in 3 dimensions. To find that directly would have required examining as many as C(8,3) = 56 
three-dimensional plots! (3) Multivariate data exploration is not an end, in itself; rather, it is a beginning. 
It has been gratifying that after communication of some puzzling patterns in the data to participants, re- 
examination of some methodology (analytical and data handling) led to important corrections. 

The pursuit of accuracy in analytical science is a timeless endeavor, and necessarily a multidisciplinary one. 
Expertise in exposing and controlling the really important errors requires a breadth and depth of knowledge 
that transcends any one field. The process begins with a common language that we call Nomenclature. 
International scientific organizations, such as IUPAC, have provided a solid foundation in this regard; but 
work remains to achieve common, and scientifically valid approaches to detection and identification limits, 
and low-level data reporting -- so important for trace analysis and communication with the public. The 
largest errors arise from erroneous assumptions and models. For these, the best defense involves a judicious 
combination of multidisciplinary competence and exemplary reference materials and test data. The most 
dramatic improvements in analytical accuracy derive from major advances in measurement and 
computational science that help to replace our dependence on assumptions and models by direct observation 
(analytical and visual). 

Acknowledgement Important discussions with G. V. Iyengar and W. Wegscheider are gratefully 
acknowledged. Thanks are due also to D. B. Klinedinst for major assistance with the figures. 
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