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ABSTRACT 
Experimental strategies are presented to obtain the magnetic interaction parameters of I=1/2 nuclei weakly 
coupled to paramagnetic species (S=1/2) in orientationally disordered materials: By performing ESEEM 
experiments as a function of the microwave frequency it is possible to induce lineshape singularities either 
in the basic modulation features due to the primary nuclear spin transitions or in the sum and difference 
"combination" lineshapes which are generated using 2-pulse and 4-pulse ESEEM techniques. The position 
of these lineshape singularies can be easily interpreted in terms of hyperfine parameters using analytical 
expressions. 
The analysis of the basic and combination lineshape singularities can also be extented to two-dimensional 
4-pulse ESEEM (HYSCORE) experiments. In this case the combination lines are replaced by mountain 
ridge shaped correlation features in the two-dimensional frequency domain. Like the combination lines 
the correlation feature can be classified as sum (Zeeman dominated) and difference (Hyperfine dominated) 
features. Furthermore, it is demonstrated that two-dimensional techniques are very powerfull in disentangling 
broad and complicated spectral features due to overlapping basic lineshapes or to different interacting nuclei. 

INTRODUCTION 

The interpretation of powder FT-ESEEM spectra in terms of interaction parameters is complicated 
for several reasons: On one hand, anisotropic interactions (hyperfine and quadrupole) lead to deep 
modulation effects, but on the other hand the spectral features are broadened and deformed by 
the anisotropic behaviour of the modulation intensity. Therefore, the spectral features no longer 
assume the familiar powder lineshape reflecting the angular probability distribution, but are instead 
a complicated function of both the angular distribution and the anisotropic modulation intensity. 
The  situation can be further complicated by the overlap of the broad lineshapes with each other. 

To eleviate this problem many groups have performed numerical line shape calculations of the ba- 
sic modulation feat,ures for the S=1/2, I=1/2 system as a function of the hyperfine parameters [l-51. 
In particular the recent study by Lai et al. [6] provided an exhaustive analytical treatment of the 
lineshape for the basic frequencies as a function of the isotropic hyperfine parameter, a, the per- 
pendicular component of the (pseudo) dipolar hyperfine matrix ( T l ) ,  and the external magnetic 
field. This multifrequency analysis was carried out for the condition /Tl/al 5 0.4, i.e. a dominat- 
ing isotropic contribution to the hyperfine interaction. A general conclusion of this study is that 
individual lineshape singularities can be induced by matching the nuclear Larmor frequency to the 
corresponding principal values of the hyperfine matrix: UI = l+Az,v,z/. 

Other studies [7] showed that,  in the limit of a small hyperfine interaction, the position of the 
sum combination line is mainly determined by the anisotropic part of the hyperfine interaction. It 
may, therefore, give an independent handle to the determination of the dipolar interaction ( T l ) .  The 
recent study of Reijerse and Dikanov [8] combined both mentioned strategies and provided an overall 
analytical description of the lineshape singularities for any combination of hyperfine parameters. 

In this paper this general strategy will be summarized and extensions to 2D-ESEEM (HYSCORE) 
techniques will be discussed. 

789 



790 E. J. REIJERSE AND S. A. DIKANOV 

THEORY 

The spin Hamiltonian for an S=1/2 I=1/2 system is written in the strong field approximation as: 

H l h  = USS,  + AS,I, + BS,Iz - U I I ~ .  (1) 

Parameters A and B are the secular and nonsecular contributions of the hyperfine interaction to the 
spin Hamiltonian. The hyperfine interaction is taken axial with isotropic component, a, and principal 
values ( -T,  -T, 22'). Parameters A and B are now expressed as: 

A = a + T ( 3 c o s 2 0 - 1 ) ;  B = 3 T s i n 8 c o s O  (2) 

8 is the angle between the dipolar HFI tensor axis and the direction of the external magnetic field. 
Using these parameters the primary ESEEM for an electron-nuclear spin system with S=1/2 and 
I=1/2 can be expressed as: 

b 1 1 
2 2 2 V ( 7 )  = 1 - -[l - cos27rvar - cos27rvqr + - c0s27r(va + vp). + - c0s27r(va - vq).] (3) 

where 
112 

v a t d o )  = [ (via(@) - & ) )  cos2 8 + .:a(o)] 
Vila(@) = -vr * y 
vMp)  = -vI ?c 2 a-T 

The modulation depth parameter, I;, is usually written in the form [9]: 

2 

k =  ( Z )  

(4) 

( 5 )  

For orientationally disordered systems, where the external magnetic field is randomly oriented rel- 
ative to the HFI tensor axes, the line shapes for the basic frequencies va(p) are determined by the 
orientational dependence of the line positions va(p)(8), their intensities b(O), and the statistical weight 
factor: a sin 6d8. The complete lineshape function for the va(q) lines in a powder spectrum is given 
by: 

which can be evaluated further as: 

Basic frequencies 

Analysis of eq. 8 immediately shows why in ESEEM the powder lineshapes are lost: At the principle 
orientations (8 = 0,7r/2) the modulation depth parameter, k, drops to zero thus suppressing the 
intensity at the canonical positions. It has been demonstrated [6,8] that the intensity at the canonical 
positions can be recovered by adjusting the Zeeman frequency such that the energy splitting in one 
of the ms manifolds is "cancelled", i.e. via(0) = 0 or vlla(@) = 0. In particular the itensity of 
the (I) features will be enhanced substantially due to the favourable statistical weight (cos8) for 
this orientation. In Table 1 the cancellation conditions and the related maxima are summarized. 

Table I. Maxima and sineularities for basic freauencies u 

condition I vLa v14 11 condition I vI1, VIIP 
via = 0 I Max' Singularity I /  v11, = 0 I - Max 
v ~ p  = 0 I Singularity Max* I /  v1lp = 0 1 Max - 

(*) The maximum intensity of this feature occurs at zero frequency 
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Figure 1: (After fig. 1 from ref. [8]) Graphical representation of the conditions for which lineshape 
singularities are observed for the basic a and p features. The conditions, which are explained in the 
text, are either related to the 1 1  orientation (dashed curves: q, and vllp), to  the i orientation (solid 
curves: v i a  and v i p ) ,  or to a special singularity (solid curves: S, and So). For negative values of 
( T / v r )  an identical representation can be drawn in which the o and p indices are interchanged. 
The weakly shaded areas in the corners of the graph represent the (a,T,vr) parameter space 
for which the difference combination line (v ,  - Y O )  is observed, whereas the central shaded area 
indicates the same for the sum combination line ( v ,  + vp) .  The coarsely shaded areas represent 
the parameter space for which the "matching range" of the individual (Y and p features can be 
exploited according to the study of Lai et. al. IS]. Also indicated are the experimental parameters 
of some selected systems: [O] Chla+ nitrogens I&III [lo]; [O] Bchla+ nitrogens 1,II & IIIJV [ll]; 
LO] Silver atoms [12]; [m] Trapped electrons [13]. 

Apart from the maxima and singularities which occur for the "cancellation" conditions, inspection 
of equation (8) also shows that a lineshape singularity is induced for the condition U I  = 1 ( 2 a  + T)/4 
independent of the angle 8. An isotropic line is observed at  a frequency of $T. This singularity is 
connected with the derivative dv,(pl/d8 = 0 for  all 8 when vla(p) = - q a ( D )  = r aT .  In figure 1 
the conditions to observe the basic lineshape singularities are graphically represented. For generality 
reasons the dimensionless parameters ( a / T )  and ( T / v l )  have been used to express the cancellation 
conditions: 

V l a ( P )  = 0 : ( T / V I )  = y- 
(T /Vl )  = &+ a/T)+2 

(9) a/T)-1 

VIla(P) = 0 : 

The condition for the single line singularity Sacs) at ET is given by: 

(10) 
4 

Sam : ( T / V I )  = *20+1 

It was demonstrated by Lai. et. a1 [6] that one can always determine a range of U I  in which the k 
parameter attains its maximum value for a specific orientation: k(8) = 1 independent of the value 
of B (as long as B # 0). This condition is fulfilled when the nuclear Zeeman interaction "matches" 
the magnitude of the effective hyperfine interaction [6,8], i.e. vI = $Jm. The coarsely shaded 
areas in fig. 1 represent the "matching range" which is bounded by the cancellation conditions. 
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Combination frequencies 

In 2-pulse and in 1D 4-pulse ESEEM experiments, apart from the basic nuclear transition frequencies 
va(p) also combination lines v, f v p  occur. In contrast to the basic frequencies, the frequency position 
of the combination lines can have an extra singularity (O(v, k vp)/a6' = 0) at  an angle 6' different 
from 0 or ~ / 2 .  Since the modulation intensity will always remain finite at this angle, a real lineshape 
singularity will emerge. 

The expression of the peak position of these singularities is, however, identical for both the sum 
and the difference combination line [8]: 

The condition IT + 2aj < 4vI or IT + 2al > 4 ~ 1  will distinguish between the sum and difference 
combination line. The central shaded area in fig. 1 represents the combinations of a ,  T and vr for 
which the singularity of the combinations line (va + vp) is defined. The shaded areas in the corners 
of fig. 1 represent the parameter space for which the difference combination line is observed. 

EXPERIMENTAL STRATEGIES 
The graphs in fig. 1 provide a very useful way to map spectral data of various paramagnetic species 
and to predict which spectral features will be enhanced upon variation of the external magnetic 
field. As an example we mapped the 15N-hyperfine parameters obtained for some photosynthetic 
materials (see figure caption). In a multifrequency experiment the points which represent a given 
set of hyperfine values (a /T  and T/vr)  will shift along a vertical line thus crossing several curves 
indicating either singularity conditions or conditions that bound the area for which the combination 
lines are observable. 

Dominating isotropic hyperfine interaction 

In fig. 2 we present a series of simulations of primary ESEEM (amplitude) spectra as a function of the 
(T/vr)  parameter for two different values of the ( a / T )  parameter. We will now discuss fig. 2a which 
shows the series for ( a / T )  = 3.0: In the weak coupling range (T/vr = 0.2) the basic frequencies are 
near their isotropic value while the sum combination line is quite strong and peaks near the double 
Zeeman frequency. Upon increasing (Tlvr),  the p feature will be weighed towards the 1 )  canonical 
position. The position of the combination line is described by eq. (11). For (T /v r )  = 0.4 the p 
feature peaks exactly at  the vllp-position. This maximum, like any peak caused by a cancellation 
condition, is positioned at  a frequency of 2v1. Proceeding further the D feature broadens out and the 
sum combination line disappears. Instead, the a lineshape attains a singularity at (T/vr)  = 0.571. 
Going to stronger coupling, starting at (T/zq) = 0.8, the /3 shape is weighed towards the 1 canonical 
position while the difference combination line pops up. At point ( T / V r )  = 1.0 the D shape peaks 
exactly at  the I canonical position (via = 2 ~ 1 ) .  In the strong coupling range only the difference 
combination line and the p shape (still slightly weighed towards the I position) are visible. 

In the region given by -2 < ( a / T )  < 1 the a and ,8 features are no longer separated in the FT- 
ESEEM spectrum and the difference combination frequency is no longer visible. According to fig. 
1, this range is the exclusive domain of the sum combination frequency, which is symmetric around 
( a / T )  = -0.5. At this ratio, for any value of the Larmor frequency the sum combination feature will 
be observed. Fig. 2b, shows a series of spectral simulations for ( a / T )  = 0. It is demonstrated that 
the lineshape enhancement strategy of varying v~ may still be successful. The edge singularities of 
the v, feature at  (T/vr)  = 2.0 and the S,,p) line singularity at  (T/vr)  = 4.0 are very pronounced. 

Extension to 2D-ESEEM 

Recently, the 2D-HYSCORE technique [14] was applied for the first time on disordered materials 
[15,16]. It turned out that the specific properties of this technique offer many advantages over the 
conventional 3-pulse 2D ESEEM technique. The basic pulse sequence of the HYSCORE experiment 
is displayed in figure 3. The echo signal can be regarded as a 4-pulse stimulated echo [14]. For every 
spectrum the echo is recorded in a two-dimensional time domain as a function of both waiting time 
t l  and t2. Since during both these waiting times the relevant electron spin coherence is stored along 
the magnetic z-axis, the main cause of echo decay will be the spin-lattice relaxation time. Therefore, 
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Figure 2: Simulated primary FT-ESEEM amplitude spectra for (a )  the case: ( a / T )  = 3.0 and (b) 
the case: ( a / T )  = 0. No dead time effects are included. All spectra are scaled to full scale. 

Figure 3. Basic pulse sequence of 4-pulse echo experiment 

as compared to the $pulse 2D-ESEEM experiment, where during waiting time 7 the spin-spin 
relaxation time is active, the spectral resolution in the second dimension ("tl" for the HYSCORE 
experiment) is substantially improved. However, in order to avoid interference of unwanted echoes 
with the stimulated 4-pulse echo, extensive phase-cycling is necessary [17]. Also, the 2D-FT pattern 
will be dependent on the fixed waiting time 7, which may induce "blind spots" in the modulation 
pattern. The general expression for the echo envelope of the 4-pulse stimulated echo is given by: 

E ( r , t l , t 2 )  = R z ( r ) & ( t l +  t2 )S ( r , t l , t 2 )  (12) 

where R1,z are the relaxation decays caused by T1 and T2 relaxation. 
S(r ,  t l ,  t 2 )  is the modulated part of the echo: 
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Where M represents the matrix of EPR transition probabilities between the nuclear spinlevels in the 
Q manifold (ijk) and the p manifold (lmn). For the spin system S=1/2 I=1/2 the above expression 
will reduce to the recently derived by Gemperle et al. [17]. The signal contribution exclusively due 
to the correlations between the Q and p features is given by: 

S(t1, t l )  = iC[ C2COS(wpt2 + w,tl + 6,) 
s2 cos(wpt2 - w,tl - 6-) 
c2 cos(w,t2 + wptl + 6,) 
s2 cos(w,t2 - o p t 1  - 6-)] 

+ 
+ 
+ 

6* are phase factors depending on r .  Concentrating on the t l  dependence of the signal due to 
cos(wpt2) we observe that the two phase modulated contributions cos(wpt2 + w,tl) and cos(wpt2 - 
w,tl) have different amplitudes: 

s2 = COS2(6/2) = 

Therefore, in contrast to the 3-pulse 2D ESEEM experiment, the HYSCORE 2D-FT spectra will 
reveal the sign of the phase modulation which will yield extra information about the coupling pa- 
rameters of the spin system. 

It is important to note that the 2D-HYSCORE spectra can be interpreted without knowledge 
of the mechanisms behind the experiment. Exactly like in 3-pulse 2D-ESEEM the nuclear spin 
transitions in the two ms manifolds are correlated to each other by crosspeaks in the 2D-frequency 
domain. In case of powder spectra, the correlation peaks may become "ridges". In order to get a 
more basic understanding of the potential use of 2D techniques in the study of disordered materials 
we performed several numerical HYSCORE simulations of the spin system S=l /2  I=1/2 using the 
multifrequency approach discussed in the previous sections. The 2D series presented in figure 4 and 
5 are generated using the same parameters as the 1D series displayed in figure 2. 

For the ( a / T )  = 3.0 series the correlation features are, like 1D basic v,(P) lineshapes, separated 
from each other. The correlation lineshapes form mountain like ridges perpendicular to the main 
diagonal. The sum combination frequency (which in the 1D spectra contains a singularity) can 
be inferred from the 2D picture by taking the projection of the correlation features on the main 
diagonal. Sliding up the line ( a / T )  = 3.0 in the "modulation map" (fig. 1) we observe that the 
correlation ridges become more extended and somewhat distorted by "second order effects", i.e. the 
mountain ridge will be "bended" slightly. In the 1D picture this is translated in terms of the sum 
combination feature which is now shifted from the "first order" double Zeeman value ( 2 ~ 1 ) .  The 
cancellation condition vL, = 0 at  ( a / T )  = 0.4 can be easily recognized in the 2D picture since 
the correlation ridges "touch" the main frequency axes (f1,0), (O,f2). The special singularity S, is 
represented in the 2D picture by the correlation ridges which are now parallel to the main frequency 
axis. The cancellation condition zq, = 0 is less pronounced because of the unfavourable statistical 
weight factor for the / I  orientation but, again, it can be observed that the ridges "touch" the main 
frequency axes. Finally, in the strong coupling region, the correlation ridges are oriented parallel to 
the anti-diagonal of the 2D frequency domain. 

It is striking to observe the redistribution of intensity of the correlation features over the two 
sets of frequency quadrants: In the weak coupling range positive phase modulation dominates which 
leads correlation features in the (+, +)/(-, - )  quadrants. In the intermediate coupling range the 
intensity is distributed equally over the (+, +)/(-, - )  and the (+, -)/(-, +) quadrants, while in the 
strong coupling range negative phase modulation is dominating leading to correlation features in the 
(+, -)/(  -, +) quadrants. Furthermore, the correlation features can be classified as sum features (in 
the weak coupling range), and difference features (in the strong coupling range). A similar behaviour 
is observed for the ( a / T )  = 0 series presented in figure 5 .  
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Fig. 4 2D-HYSCORE simulat,ions for thc case ( a / T )  = 3.0. 
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CONCLUDING REMARKS 

We have demonstrated that 2-pulse ESEEM will always show features, either basic frequencies or 
combination lines, which can be interpreted using analytical expressions. Multi-frequency strategies 
enable full use of these expressions. 

The observed singularities can be readily translated into 2 dimensions and the preliminary 
HYSCORE simulations show that important information can be obtained even at  a single microwave 
frequency: The hyperfine limit can be inferred from the shape and intensity distribution of the corre- 
lation features over the two quadrants. Finally, HYSCORE spectra may facilitate the interpretation 
of lineshape singularities in case of overlapping ESEEM signals due to several nonequivalent nuclei. 
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