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Abstract The synthesis of a new class of auxiliary based chiral synthons, 
y-alkoxy-2(5H)-furanones, is described. The multifunctional compounds 
enter a variety of asymmetric transformations leading to acyclic- and cyclic- 
products with up to four new stereogenic centers in a single operation with 
stereoselectivities exceeding 98%. Applications in new routes to an enantio- 
merically pure D-lactam and lignans are given. 

Chiral non-racemic molecules play an essential role in numerous molecular recognition and inter- 
action phenomena. It is well established now that the enantiomers of biological active compounds 
such as drugs or agrochemicals are chemically distinct species.' Although the use of pure 
enantiomers as starting materials or intermediates is generally considered a -sine qua non - in 
total synthesis of natural products the potential impact of molecular chirality in such area's as 
supramolecular chemistry and nanotechnology or in the design of new materials is far from fully 
realized? There exists a tremendous challenge to develop efficient routes to enantiomerically 
pure compounds. New catalytic enantioselective methods rapidly emerge and are particular 
attractive when the 'chironomics' of the stereoselective synthesis are considered? Chiral auxiliary 
based asymmetric transformations are often highly successful due to the versatility and scope and 
because of the reliable and often predictable absolute stereocontrol that is offered in many 
cases: We devised several new chiral auxiliary based synthons, i.e. 1 and 3, that combine high 
stereoselectivity (enantiomeric excess in general 298%) with synthetic flexibility. 5-Alkoxy-2(5H)- 
furanone 1 can be considered a chiral analog of maleic anhydride (2) with slightly reduced 
reactivity due to the presence of an metal functionality in 1 instead of the second carbonyl 
functionality in 2. 

R '  

3 2 - - 1 - 
As conformational rigidity is enforced by the cyclic structure and effective r-face shielding of the 
a,B-unsaturated ester moiety in 1. is exerted by the OR group highly diastereoselective addition 
reactions are expected. The synthesis of enantiomerically pure 5-alkoxy-2(5H)-furanones will be 
described and several applications in the asymmetric synthesis of cyclic- (4) (via cycloadditions) 
and acyclic- (5) building blocks (via tandem 1,4-additions) are reported. Furthermore, the 
synthetic versatility is illustrated in the preparation of eudesmin and a B-lactam in enantiomeri- 
cally pure form. 
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SYNTHETIC ROUTES TO ENANTIOMERICALLY PURE 5-ALKOXY-2(5H)-  
FURANONES 

We considered the use of a chiral auxiliary alcohol in the preparation of the acetal moiety of 
butenolide 1 via acetalization of 5-hydroxyfuranone 6 an attractive route to the pure enantiomers. 
In order to be synthetically useful the chiral auxiliary has to meet the following criteria: i. The 
5-alkoxy-2(5H)-furanone should be a crystalline compound making it, in principle, possible to 
separate both diastereoisomers by means of crystallization. ii. Both enantiomers of the chiral 
alcohol have to be available allowing access to (5R)- and (5S)-1. iii. The auxiliary alcohol has to 
be relatively inexpensive in order to prepare 5-alkoxy-2(5H)-furanones in large quantities. 

The alcohol of choice, which meets all these criteria, is menthol. The asymmetric syntheses of 
(5R)-& and (59% are depicted in Scheme 1. Acetalization of 5-hydroxy-2(5H)-furanone (6)' 
with l-menthol at 100 "C for 20 h without solvent or at 120 "C in refluxing toluene afforded a 
mixture of diastereoisomers & and & in a 60:40 ratio: 

6 - 
100 'C 

H d  

a a = epimerizotion (p-TSOH) 
b = crystollizolion 

RI = a R d =  %' 
Enantiomerically pure & is easily obtained via a crystallization-epimerization procedure. The 
major diastereoisomer & readily crystallizes at -20 "C from petroleum ether solutions of the 
mixture of & and a. The crystallization process is accompanied by a remarkable second order 
asymmetric fransfomafion of 8 in solution. The slow "crystallization induced epimerization" of & 
is driven by the continuous removal of the major crystalline isomer from the solution. This 
epimerization-crystallization process allows the isolation of enantiomerically pure menthyloxybu- 
tenolides in high yields (up to 80%). By a similar sequence (Scheme l), using d-menthol as a 
chiral auxiliary alcohol, (5S)-5-(d-menthyloxy)-2(5H)-furanone (a) is obtained. 

A number of 3- and 4-alkylsubstituted butenolides 2, as single enantiomers, have been prepared 
via related routes as shown in Scheme 1. 

In an alternative approach we investigated the catalytic kinetic resolution of racemic y-alkoxy 
butenolides 1 (RO = MeO, iPrO), an enantioselectivity >90% (at 75% conversion) has been 
reached sofar. 

CYCLOADDITIONS 

The thermal Diels-Alder reaction of dienes with (5R)-butenolide jQ is expected to proceed with 
high endo-selectivity and re-face diastereoselectivity. y-Menthyloxy-butenolides & and .? are 
extremely useful chiral dienophiles both for Diels-Alder reactions with cyclic- and acyclic 1,3- 
dienes. In particular the synthesis of a variety of optically active 3,4-disubstituted-cyclohexenes 
and -cyclohexanones 11. is readily achieved but also the formation of trisubstituted derivatives 12 
is feasible? 
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Cycloaddition of 2,3-dimethylbutadiene for instance provided enantiomerically pure lactone- 
annulated cyclohexene 14 (Scheme 2)? Solvolysis in methanol under mild conditions resulted in 
lactone with enantiomeric excess >99% whereas the auxiliary R menthol was recovered." 

(ea >99X) 

Scheme 2 
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Enantiomerically pure decalines are particularly attractive targets for asymmetric cycloadditions 
as numerous natural products and biological active compounds contain the 6,6-ring system. 
Among these are various classes of steroids, the sesquiterpenes of the drimane class having insect 
antifeedant and plant growth regulation properties and the diterpenoids of the labdane class. 
Examples are forskolin with pronounced antihypertensive activity and compactin which has been 
shown to lower serum cholesterol levels. As our approach to the decaline and hydroindane 
skeletons is based on intermolecular cycloadditions with I-ethenyl-cycloalkenes it might be 
possible to furnish, in a single operation enantiomerically pure decalines and indanes. The 
feasibility of this approach was confirmed using for instance 1-( 1-trimethylsily1oxyethenyl)- 
cycloalkenes 16 and 17. Reaction of dienes followed by in situ desilylation of the 
resulting adducts with CsF in wet acetonitrile at -80 "C afforded enantiomerically pure 
respectively." Four new stereogenic centers were introduced in a one pot operation under 
complete control of the regioselectivity, endo-selectivity and trans-selectivity with respect to the 
menthyloxy substituent. Furthermore, trans-decaline ring fusion was observed exclusively. 
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The prospect of preparing optically active multifunctional compounds by 1,3-dipolar 
cycloadditions to chiral y-alkoxybutenolides in a high stereocontrolled fashion is particular 
attractive. The addition of ethyl diazoacetate for instance proceeds with complete regio- and 
diastereofacial control to yield enantiomerically pure 20 (Scheme 4)." 

Scheme 4 
0 
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Virr asymmetric 1,3-dipolar cycloadditions carbon, oxygen and nitrogen functionalities are readily 
introduced into the a- and &positions of the lactone moiety. In this way useful precursors for 
natural product synthesis are accessible. 
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1,4-ADDITION REACTIONS 

A variety of 1,Caddition reactions to y-alkoxy-2(5H)-furanones both with carbon- and hetero- 
atom based nucleophiles take place. In (5R)-5-(Z-menthyloxy)-2(5H)-furanone f& effective r-face 
shielding is exerted by the bulky menthyloxy moiety resulting in trans diastereoselective additions 
of these nucleophiles (Scheme 5). 4-Substituted y-alkoxybutyrolactones give, after ringopening 
and removal of the auxiliary, acyclic products 2 in their enantiomerically pure form.12 

Scheme 5 
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The 1,4-addition of primary and secondary amines proceeds trans diastereoselective with respect 
to the menthyloxy-group to give 4-amine-substituted lactones 23 in high yields (Scheme 6).13 

Scheme 6 / H O +  24 
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The enantiomerically pure aminolactones 2 are extremely versatile synthons as illustrated in 
Scheme 6. It should be emphasized that the amine functionality is both in an cu-relationship and a 
8-relationship to two functional groups in different oxidation stages. Selective manipulations of 
the acetal and ester moieties in 23 give therefore access to both 1,2- and 1,3-aminoalcohols and 
a- (25) and 8-aminoacids (26) whereas LiAlH, reduction readily provides aminodiols 24. 
The addition of thiols to y-alkoxybutenolides, catalyzed by tert-amines, is also a fast and 
quantitative reaction (Scheme 7). The short synthetic route to both enantiomers of 3,4-epoxy- 
b~i tanol*~ illustrates only one of the various application of 4-sulfide substituted lactones 22. 

Scheme 7 
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A very flexible synthetic protocol for the preparation of 4-alkyl- and 3,4-dialkyl substituted 
butyrolactones has been developed. Using lithiated bisthiophenyl dithianes as nucleophiles a 
variety of alkyl- and benzyl-substituents can readily be introduced via trans-diastereoselective 
1,Caddition followed by desulfurization using Raney-nickel. 
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In a tandem armroach the resulting lactone enolate, obtained after the initial 1,4-additionY is 
quenched with an alkyl- or benzyl-iodide. Subsequent Ra-Ni reduction provides 3,4-disubstituted 
lactones. The sequential introduction of the trismethylthiomethyl- or bisthiophenyldithiane-group 
at C, and an alkyl group at C, demonstrates that two new stereogenic centers are readily formed 
with complete trans vicinal stereocontrol.” The stereoselective sequential functionalization of 
the y-butyrolactone ring with two benzyl-substituents forms the core of a new synthetic strategy 
to several classes of biologically active lignans (vide infru). 

The stereoselective tandem addition-quenching reactions to 5-alkoxy-2(5H)-furanones was further 
extended using prochiral nucleophiles and prochiral electrophiles. 

Scheme 8 
A X  
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- 29 (X = OCHj) 51 (X = OCH3.91 %) 35 (X = OH, NHz) 

52 (X = NHz. 65%) 

For instance when lithioenolates of the protected a-hydroxyesters or aminoesters are employed as 
nucleophiles and benzaldehyde as an electrophile lactones 11 and 2 are obtained as single 
enantiomers in high yield (Scheme 8). It should be noted that in order to reach high 
stereoselectivities at the exocyclic center the use of pure enolates, either E or Z, is essential. In 
the case of 29 and 3 presumably the chelated Z-enolate is involved leading to syn-adducts 
exclusively. The adducts 31 and 2 can sewe as precursors for multifunctional a-hydroxyacids and 
a-aminoacids. As complete stereocontrol is found in the enolate addition and the subsequent 
aldol-reaction up to four contiguous stereogenic centers are introduced in a one pot operation 
resulting in enantiomerically pure products. 

SYNTHETIC APPLICATION OF MENTHYLOXYBUTENOLIDES 

A few applications of 1,4-addition reactions to 5-menthyloxybutenolides will be described here to 
demonstrate the synthetic potential in i.e. natural product chemistry. 

Scheme 9 
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The 4-amine-substituted lactones 23 (vide supra) are versatile precursors for the preparation of 
optically active D-aminoacids and D-lactams.'6 Scheme 9 illustrates the conversion of 2 into 
D-lactam 36, a potential carbapenem precursor. Essential steps involve ring-opening of 23 with in 
situ acetalization without epimerization and ringclosure of 35 using Mukayama's procedure. 
The tandem 1,4-addition reactions provide short and stereoselective routes to the three major 
classes of lignans x-2. New routes to enantiomerically pure lignans are highly warranted 
considering the biological activity of numerous lignans." 

X 

The total synthesis of (-)-eudesmin (42) (Scheme 10) exemplifies a successful strategy with the 
formation of the dibenzyllactone moiety as the key step." 

Scheme 10 
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Although the diastereoselectivity in the aldolstep is only modest, both epimers lead to 
(-)-eudesmin (42). Various other lignan syntheses as well as studies of further applications of 
cycloaddition and 1,4-addition products are currently in progress. 

In conclusion efficient routes to chiral non-racemic y-alkoxybutenolides have been developed . 
The compounds are versatile chiral building blocks in asymmetric synthesis due to their 
multifunctional nature, excellent stereocontrol and synthetic flexibility. Exploration of the acetal 
functionality in these butenolides will further increase the scope. 

Acknowledgement 

Part of these investigations were supported by the Netherlands Foundation of Chemical Research 
(SON) with financial aid from the Netherlands Organization for Scientific Research (NWO). 



Asymmetric synthesis using y-alkoxybutenolides 1871 

1. 

2. 
3. 
4. 
5. 

6. 
7. 
8. 
9. 

REFERENCES 

(a) B. Holmstedt in "Chirality and Biological Activity", Ed. by H. Frank, B. Holmstedt and B. 
Testa, H.R. Liss Inc., New York 1990, pp 1-14. (b) B.G. Main in "Problems and Wonders of 
Chiral Molecules", Ed. by M. Simonyi, AkadCmiai Kiad6, Budapest 1990, p 329. (c) R.R. 
Ruffolo Tetrahedron 1991, 47, 9953. (d) G.M. Ramos Tombo, D. BelluS Angew. Chem. Int. 
Ed. Engl. 1991,30, 1193. 
B.L. Feringa, W.F. Jager, B. de Lange, E.W. Meijer J. Am. Chem. SOC. 1991,113, 5468. 
R. Sheldon Chem. Znd. 1990, 212. 
D. Seebach Angew. Chem. Int. Ed. Engl. 1990,29, 1320. 
(a) B.L. Feringa Red. 7kav. Chem. Pays-Bas 1987, 106, 469. (b) B.L. Feringa, R.J. Butselaar 
Tetrahedron Lett. 1983, 24, 1193. (c) G.O. Schenk Angew. Chem. 1952, 64, 12. (d) G.O. 
Schenk, R. Appel Naturwissenschaften 1946, 33, 122. (e) I. Maeba, M. Suzuki, 0. Hara, T. 
Takeuchi, T. Iijima, H. Furukawa J. 0 ~ .  Chem. 1987, 52, 4521. ( f )  G. Piantelli, A. Scettri, M. 
D'Auria Tetrahedron Lett. 1979, 20, 1507. 
J.C. de Jong P1i.D. Thesis, University of Groningen, The Netherlands, 1990. 
J.C. de Jong, F. van Bolhuis, B.L. Feringa Tetrahedron: Asymmetry 1991, 2, 1247. 
B.L. Feringa, J.C. de JongJ. 0 ~ .  Chem. 1988, 53, 1125. 
J.C. de Jong, B.L. Feringa Tetrahedron Left. 1989, 30, 7239. 

10. J.C. de Jon& J.F.G.A. Jansen, B.L. Feringa Tetrahedron Lett. 1990, 31, 3047. 
11. B. de Lange, B.L. Feringa Tetrahedron Letf. 1988, 29, 5317. 
12. J.F.G.A. Jansen, B.L. Feringa Syntii. Commiin. 1992,22, 1367. 
13. B. de Lange, F. van Bolhuis, B.L. Feringa Tetrahedron 1989, 45, 6799. 
14. B.L. Feringa, B. de Lange Tetrahedron 1988, 44, 7213. 
15. (a) J.F.G.A. Jansen, B.L. Feringa Tetraliedron Lett. 1989, 30, 5481. (b) J.F.G.A. Jansen, B.L. 

16. M. Lubben, B.L. Feringa Tetrahedron: Asymmetry 1991, 2, 775. 
17. (a) A. Pelter, R.S. Ward, D.M. Jones, P. Maddocks Tetrolzedron: Asymmetry 1992, 3, 239. (b) 

A. Pelter, R.S. Ward, R. Venkateswarlu, C. Kamakshi Terraliedron 1991, 47, 1275. (c) R. Van 
Speybroeck, 13. Guo, J. Van der Eycken, M. Vandewalle Tetrokedron 1991, 47, 4675. 

Feringa Tetrahedron: Asymmetry 1991, 2, 109. 

18. J.F.G.A. Jansen, B.L. Feringa Tetrahedron Lett. 1991, 32, 3239. 




