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Abstract - Environmctital isonicrs are molccules of the sanic tnolccular spccics 
which are distinguishable bccause they exist in different liquid cagcs. This paper 
derives thc conditions for distinguishability whcn thc cagcs oxist i n  dynamic 
equilibrium. The approach is similar to tliat used in trcnting the coalcsccnce of 
spcctral lincs in dytiuiiic magnetic rcsonancc. For both water and benzciie there is 
evidence that the liquid might be a mixture of two niain cnvironmcntal isomers. 
By our criteria the suggested isomcrs for water would be casily distinguishable at 
ordinary T and P, while those for bcnzene would not be. 

INTRODUCTION 

The cage effect in liquids permits the existence of environmental isomers, which are defined as 
molecules that belong to the same molecular species but are distinguishable because they exist in 
different liquid cages. In this paper we shall derive the conditions for distinguishability. I t  will turn 
out that distinguishability depends both on differences in the interaction energy of a molecule with its 
various cages, and on the cage lifetimes. 

For example, the pair potential of two benzene molecules, according lo computer simulations, has 
two stable minima: a tilted-T configuration (\t) at -9.7 kJ, and a displaced-parallel configuration (\p) 
at -8.8 kJ, as shown in Fig. 1 (ref. 1). If this is accepted, then the benzene molecules in liquid 
benzene can be divided into three groups, depending on whether the ring neighbors are \t\t, \t\d, or 
\d\d. In fact, there is no compelling evidence tliat liquid benzene is a mixture of isomers, and \\'e 
shall find that the computed energy differences are too sniall for operational distinguishability. 
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Fig. 1 .  Stable potential minima for a pair of 
benzene molecules and their ring center-to-center 
distancc: (a) tilted-T, -9.7 kJ/mol, 4.99 A; (b) 
displaced-parallel, -8.8 kJ/niol, 4.50 A (ref. I ) .  
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On the other hand, for liquid water there is thermodynamic, dielectric and spectroscopic evidence 
(refs. 2-8) that the liquid may be an equilibrium mixture of two "states", but broad acceptance of the 
two-state model has been prevented by the lack of a plausible description of the nature of the states. 
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TABLE 1 .  Fitted properties and proposed cage structures for the two states 
of water (refs. 3-7). 

Cage environment \4w \5w 

molecules in cage wall 4 5 

configuration ice-like one side ice-like, other 
side net non-polar 

fractional amount (298 K) 0.69 0.3 I 

resultant cage dipole 2.01 Itw 0.91 pLw 

AH,,, 10.5 kJ/mol 

24 J/mol. K 

ca. ~ 5 x 1 0 "  s-' 

The potential-energy surface of HOH is well-known and does not support a case for structural or 
conformational isomers. And if the states were distinct hydrogen-bonded complexes, one would 
expect to find many states to be significant, rather than merely two. Grunwald has argued that the 
states are environmental isomers (ref. 7), and we shall find that the fitting parameters which describe 
the properties of the two states indeed satisfy conditions for distinguishable environmental isomers. 
Some of these fitted properties are given in Table 1 

EXCHANGE AVERAGING I N  THE T I M E  A N D  FREQUENCY D O M A I N S  

Liquid cages interconvert. For instance, the conversion of \t\t to \t\d benzene requires no more than a 
near 90' rotation and minor translation of a benzene molecule in the surrounding cage, a process 
whose mean time at room temperature might be of the order of 10-I' s. Because of the 
interconversion of liquid cages, we shall find that conditions for distinguishability of environmental 
isomers resemble those for exchange averaging of NMR spectral lines, and we shall therefore begin 
with a review of chemical exchange in NMR (refs. 9-12), Our conclusion will be that exchange- 
averaging is not a peculiarly magnetic-resonance phenomenon: It is a general symptom of 
frequency-switching in waves. The magnetic field serves only to separate the nuclear-spin energy 
levels. 

Fig. 2a shows the well-known sequence of NMR absorption line shapes with increasing rate of  

exchange for two equally populated chemical shifts. The initially discrete spectral lines first broaden, 
then coalesce, and then sharpen up as a single line. These spectra were calculated from the 
McConnell-Bloch equations (ref. I I ) ,  assunling slow passage, negligible TI relaxation and negligible 
rf saturation. 

We shall now show that an identical pattern of line broadening and coalescence is obtained for any 
"wave switching". Thus Fig. 3 shows two waves of equal amplitude and arbitrary physical nature, 
switching back and forth between two frequencies v,, and vH. The frequency-switches must be 
sudden, so that wave-motion during the transit-times is negligible. Let K,, and K ~ ]  denote the 

residence times at v,, and v13 and let 'I be defined by I/r = I/r, + lkl3. The individual residence 
times at v,, and v , ~ ,  between frequency switches, of course vary stochastically about their mean 
values according to an exponential distribution of residence times, as required by first-order kinetics. 
The wave trains used in our calculations encompass 10, to 10' frequency switches, with exponential 
distributions of waiting times. 

J 
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Fig. 2.(a) Magnetic resonance absorption spectra as 
a function of distinguishability index (6). Curves 
calculated from McConnell-Bloch equations. 

(b) Normalized power spectra resulting from 
stochastic FFT under corresponding conditions. 
Each compartment is an overlay of FFT's result- 
ing from a frequency-switching wave train and an 
energy switching state function (ref. 18). 
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Fig. 3 .  Typical waveforms subjected to stochastic 
FFT. The upper wavetrain yields a power spectrum 
consisting of two well resolved lines. The lower 
wavetrain yields a single collapsed line. 

Fig. 2b shows the power spectra obtained from discrete Fast-Fourier transforms (FFT's) of such 
wave-trains into the frequency domain. The v's and T'S match those of Fig. 2a. It is clear that the 
FFT-power spectra and the NMR absorptions show essentially identical shapes. 

The technique of formulating the problem of frequency switching first in the time domain and then 
transforming it into the frequency domain provides a comfortable link to the formulations of 
chemical kinetics. It also permits certain properties of the spectra to be derived from established 
Fourier transform theorems (refs. 13,14). For spectral coalescence it can thus be shown that the 
absolute values of vA and v13 are arbitrary, because coalescence depends only on their difference 
I v,.,-v,% I as well as the mean time T for exchange, while I vA+vI3 I /2 determines the centroid of the 
active spectral range. From the view-point of distinguishability, the relevant parameter is the 
distincuishability index c, defined in Eq. I 

5 = 2x I vI2,-v,A, 1 ( 1 )  

As shown in Figs. 2, when 5 >> 1 the lines are well resolved. When 5 << I ,  the FFT spectrum 
consists of a single sharp line. Coalescence occurs in the narrow range 1 5 6 < 42. In Fig. 2, where 
T,., = T , ~  and the wave-amplitudes are equal, the coalescence point is at 6 = 42. 

DISTINGUISHABILITY INDEX AND ENVIRONMENTAL ISOMERISM 

Although the translation and rotation (TR) of caged molecules are hindered motions (librations) and 
the associated energy levels thus vary with the nature of the cage, the spacing of the TR levels is 
dense enough so that the energy per mode is close to kT, the classical limit for an oscillator. In the 
following, we shall therefore track the electronic energy and the electronic wave function of the 
caged molecule. In particular, we shall assume that there are just two kinds of cages, that the nature 
of the cage surrounding a given molecule interconverts between one kind and the other, and that the 
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molecule therefore continually switches its environment. We treat the interaction of the molecule 
with its cage as a perturbation, and assume that the caged molecule remains in its electronic ground 
state. Within this framework, cage switching is tantamount to switching of the related perturbation 
energy of the electronic ground state. The problem is simplified because the molecular motions are 
slow enough so that Ehrenfest's Adiabatic Principle applies (ref. 15) .  A change in a cage-wall 
proceeds on the time-scale of molecular motions, while the electronic energy of the electronic ground 
state responds to the change on the much shorter time-scale of electronic motions. Accordingly, a 
caged molecule, on cage-switching, arrives in its new cage with the electronic wave function and 
associated energy essentially in a stationary state. As a further simplification, we shall distinguish 
between relatively slow, qualitative changes in the "structure" of the cage wall, and stochastic noise 
due merely to thermal motions of the molecules in the cage wall. The noise fluctuates on the time- 
scale of molecular motions, while qualitative changes in the structure of the cage wall occur on a 
significantly longer time-scale (ref. 16). On this basis, the transit time for cage-switching and the 
correlation time for thermal noise are both long enough for the Adiabatic Principle to apply, while 
the same transit time is short compared to the mean lifetime of the cage. Cage-switching may thus 
be viewed as a sudden transit from one stationaw, albeit noisy, wave function to another, in the same 
sense that spectral line-switching in NMR, in the presence of magnetic thermal noise, is viewed as a 
sudden event. 

In the following, we shall approach the problem of distinguishability of cage environments in two 
steps. First we shall examine sudden cage-switching in the absence of thermal noise; then we shall 
include thermal noise. As might be expected, the inclusion of thermal noise is important. For 
definiteness, let the two cage environments be denoted by \a and \b. The wave functions for the 
caged molecule in the two environments is then Ya(h)(x,t) = @,(h)(x)exp(-2xie,(h)t/h), where E, and 
Eh are the two state energies as perturbed by the A and B cages. The time-dependent part of the 
wave function has frequencies v,(b) = E,(b)/h so that the distinguishability index (1) becomes: 

Absolute values of E, and Eb are not needed. Distinguishability of states in cage switching is 
therefore analogous to distinguishability of spectral lines in spectral-frequency switching. 

This conclusion is clearly demonstrated by Fourier transformation. In the examples to be presented, 
the stochastically exchanging state waves have equal amplitudes and mean lifetimes (T* = T ~ ~ ) .  This 
result is shown in Fig. 2b, in which each compartment shows an overlay of two power spectra with 
the same value of <, one for spectral-frequency switching and the other for cage switching. The 
overlays are practically identical. The differences are consistent with 3% random errors owing to the 
finite lengths of the wavetrains. Thus, within this framework, stochastic sudden switching between 
two stationary quantum states produces the same kind of power spectra as are observed in magnetic 
resonance or, indeed, in any stochastic frequency switching of a harmonic motion. At high values of 
6 the two state-waves are well resolved, at low 5 they are exchange-averaged, and coalescence occurs 
when < is of order 1 to 42. In quantum mechanics, state-waves are not observables - one needs to 
perform an operation to obtain an observable result. We shall therefore state, without proof, that 
operationally the distinction between two interconverting energy states E , ~  and E,, is always a matter 
of probability. The probability increases with increasing 5 and is greater than 1/2 when 5 > 10. On 
this basis, the odds are better than even that molecules in two cages, \a and \b, can be distinguished 
by energy measurements when 1 A€,,, 1 > (10/2x)h/r. 
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EFFECT OF THERMAL NOISE 

Even in the absence of cage exchange, the electronic state-energy of the caged molecule fluctuates 
because of thermal motions of the molecules in the cage wall. Because of limited space we shall 
give only an outline of our procedure. We assume that the s molecules in the cage wall move 
independently, and that only one direction of motion, the motion normal to the cage wall, is relevant. 
We adopt a possible pairwise potential and use it to construct a cage potential for the central 
molecule such that the potential minimum occurs at the most probable nearest-neighbor distance, 
which need not coincide with the pairwise minimum but might coincide with the maximum of the 
pairwise distribution function g(r) for the liquid. Given the cage potential, we calculate the 
amplitude of the motion in the desired direction when the mean energy of motion, potential + kinetic, 
equals kT. We then use that amplitude and the original pairwise potential to calculate od(&), the 
standard deviation in the fluctuating perturbation energy for one molecular pair - one molecule in the 
cage and the other in the cage wall. Finally, the total energy half-width associated with the thermal 
fluctuations is A&thcm, = ~ S \ J S ( ~ ~ ( E ) .  For non-polar liquids the result obtained for AEthenl1 is 
remarkably robust. For a Lennard-Jones pairwise potential we obtain Eq. 3 .  

= (4 /5~)"~(kT)  (Lennard-Jones pairwise potential) ( 3 )  

The Lennard-Jones parameters 
neighbor distance) do not enter the final result. Other models we have tried gave results of the same 
magnitude as (3). We shall therefore adopt Eq. 3 for the energy half-width of benzene cages. Setting 
the mean nearest-neighbor number s = 8, we obtain Actheml = 0.8 kJ/mol. 

For water cages we used the dipole-dipole potential tested by Grunwald (ref. 7), and added a 
Lennard-Jones interaction with o ~ , ~  = 2.725 A and E , , ~  = -6.0 kJ/mol, which together reproduce the 
observed mean 0-0 neighbor distance of 2.9 A .  Then AEthcml,\4w = 1 . 1  kJ/mol for the s = 4 cage, 
and A&,hcml.\jw = 1.0 kJ/mol for the s = 5 cage. These values will be used in the following. 

and oI,J) and the liquid expansion (i.e. the chosen mean nearest- 

DISTINGUISHABILITY OF NOISY CAGE ENVIRONMENTS 

We begin with Fig. 4, which shows the state energies of benzene molecules in \a = \t\t and \b = \t\p 
cages. (See Fig. 1 .) A&,b = 0 9 kJ/mol; A E ~ ~ ~ ~ ~ ~ , ~ ,  - AEthcnl,,b = 0.8 kJ/mol; the populations of the 
two states are treated as equal since \t\p has a statistical weight of two. I/r is equated to the rate 
constant 6Dbcrv./02 for the dissociation of a benzene-benzene neighbor pair, where DbcW is the 
macroscopic coefficient for linear diffusion (ref.16). The value for l /r  is 4 ~ 1 0 ~ "  s-'. Accordingly, 6 
= 350. In Fig. 4, the sharp lines (a) represent the power spectrum in the absence of thermal noise. 
Here the states are clearly distinguishable. The broad band (b) shows the same power spectrum with 

= 0.8 kJ/mol ( 2 . 0 ~ 1 0 ~ ~  s-'), The states now overlap, and the original resolution is lost. 

- 

0 o Benzene 

Fig. 4. Simulated power spectrum for benzene 
molecules in \t\t and \t\p environments, as 

L 
0 described in the text. (a) Without thermal 
0 noise there are two sharp lines. (b) With 
P 

thermal noise the two lines broaden and 
overlap. 
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Fig. 5 .  Simulated power spectrum for water molecules in Ww 
and \5w environments, as described in the text. (a) Without 
thermal noise there are two sharp lines. (b) With thermal noise 
the lines broaden but remain well resolved. 

Fig. 5 shows the state energies of water molecules in \a = \4w and \b = \Sw. (See Table I . )  We 
shall use the following values: fraction of \4w = 0.7, A E , ~  = 10 kJimol, A E ~ ~ ~ ~ ~ ~ , ~ ,  = 1 . 1  kJ/mol, 

= 1.0 kJ/mol, and I/r = 1 . 5 ~ 1 0 "  s-', Accordingly, 5 = 1000. The sharp lines (a) 
represent the power spectrum in the absence of thermal noise, while curve (b) shows the broadened 
power spectrum in the presence of noise. Although broadened, the bands are clearly resolved, and 
water molecules in these cages are distinguishable environmental isomers. The empirical evidence 
that liquid water is an 1: 1 equilibrium mixture of two "states" therefore need not be discarded for 
lack of a reasonable structural model. The two states may reasonably be described as environmental 
isomers. 

CONCLUSIONS 

We conclude that there are two conditions for the existence of environmental isomers: ( I )  5 = 2 x  

I AE,,,/h I r > ca. 10; (2) ALE,,, > ca. 3 kJ/mol. Both conditions must be satisfied. When that is not 
the case, we visualize two possibilities: ( I )  state-wave overlap when 5 is ca. 0 5 to 5 ;  ( 2 )  state 
coalescence when 5 < 0.5. In case of state-wave overlap the environment of the caged molecule is a 
quasi-continuum; either a continuum model or a discrete molecular model, as in the Monte Carlo 
approach (ref. l ) ,  may be used. In case of state coalescence the environment I S  a genuine continuum, 
and a continuum model becomes mandatory. 

The molecular packing fraction in liquids varies widely with temperature and pressure. Rabinowitch 
and Wood (ref. 17) have shown that, as the packing fraction increases, the onset of the cage effect is 
sudden. When the density of the liquid drops below the threshold for cage formation, environmental 
isomerism disappears. It is therefore conceivable that environmental isomerism is manifest under 
conditions of relatively high liquid density, but disappears at lower densities. This may be the case 
for water, because the "anomalies" which justify a two-state model largely disappear as liquid water 
approaches the critical point. 
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