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Abstract 

We describe two algorithms used in structural studies of proteins and macromolecular complexes. The 
first deals with simulation of Small Angle X-ray Scattering patterns. An approximate representation of 
the Debye formula based on the discretized histogram of pair distances allows the SAXS calculation of 
large macromolecules modelled by thousands of spheres to be performed in a few minutes of CPU time. 
The second algorithm conCerns the computation of the mass projection of a structural model at a given 
projection angle. Such projections are used to reproduce structural features observed in electron 
micrographs of large biological structures. The accumulation of the Fourier transform intensity of mass 
projections of model structures for a series of angles is used to simulate X-ray diffraction patterns. Both 
algorithms have been parallelised and implemented on the Intel iPSC/860 hypercube. 

INTRODUCTION 

It is a widely held belief that protein function is intimately related to protein structure. In the 
relatively few cases where a protein can be cxystallised X-ray diffraction can be employed to 
determine the protein structure in its crystalline state to atomic resolution. In many more cases, 
however, only dilute solutions of a protein can be probed at moderate resolution ( -3nm) through 
the technique of small angle X-ray scattering (SAXS) (ref.1-2). Advances in experimentation using 
synchrotron radiation (ref. 3) permit measurements at even higher resolution but the major 
constraint remains the one-dimentional nature of the data which is not in itself sufficient for 
unambiguous structure determination in three dimensions. On the other hand, the natural 
environment where most proteins exhibit their functional properties is in solution. Many proteins are 
of particular biological interest because of the macromolecular complexes they form either by 
themselves, e.g., microtubules, or in combination with other proteins. A prime example of a very 
large macromolecular structure is the muscle fibre (ref. 4). In such cases other structural techniques 
are employed, i.e., electron microscopy (ref. 5-6) and X-ray diffraction (ref. 7). 

The use of S A X S  has proved extremely valuable in structural studies both of individual molecules 
and of aggregates (ref. 8). Of specific interest are conformational changes upon change of 
environmental conditions (e.g., pH, counterion concentration, ligand attachment) or of the 
aggregation dynamics of macromolecular complexes. Time resolved SAXS and X-ray diffraction 
experiments bring additional information into play, Structural modifications provide the mechanism 
by which time evolution of a system develops. Modelling of protein structures, either in a static or in 
a time evolving form is crucial in visualising the processes that lead to specific functional behaviour. 
We outline below computer algorithms for the simulation of SAXS data, electron micrographs and 
X-ray diffraction patterns based on the modelling of structures by assemblies of spheres. 
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SAXS SIMULATION 

A frequently used approach to simulating SAXS patterns of large molecules is to build models of 
closely packed spheres and then use Debye’s formula (ref. 9-10) 

to calculate the scattered intensity, I(S), for each value of the scattering vector modulus, S. The first 
sum gives the intensity for spheres in isolation, while the double sum gives the contributions from 
density-density correlations. Ij is the scattered intensity by each sphere, Fj(S) is the form factor for 
each sphere and rjk is the distance between pairs of spheres. The use of spheres is convenient both 
for the derivation of the formula and for model building purposes. It is equivalent to sampling the 
structure at the points where the spheres are positioned. The basic assumption is that the mass 
distribution is adequately and uniformly sampled for a given resolution. 

Initial models for a starting overall shape are usually based on prior information from biophysical 
data, e.g. electron microscopy. Subsequent refinement is carried out by adding or repositioning 
spheres and recalculating the Debye formula. This manual procedure relies on the expertise of the 
modeller and is limited by the very large number of configurations that need to be tried. An elegant 
procedure described by Svergun and Sturhman (ref. 11) using a method based on spherical 
harmonics rather than groups of spheres is very powerful for fitting SAXS data of globular structures 
but it is rather limiting when more complex shapes are to be fitted. We have developed an algorithm 
for iterative calculation of successive configurations of assemblies of spheres on a predetermined 
grid capable of selecting good fits among millions of configurations but this will be detailed 
elsewhere (program DALAI, E.Pantos,D.Holden, J.West and J.Bordas, unpublished). We 
concentrate here on the implementation of a simplified form of the Debye formula and an 
approximation which makes possible the SAXS simulation for structures modelled by thousands of 
spheres in a few minutes of CPU time. 

The computational task in the double summation of the Debye equation can be much reduced in size 
if all spheres are given the same radius and mass density. This implies that the mass density of the 
structure is uniform over the sampling grid, a reasonable assumption for protein molecules over the 
resolution range they are probed by SAXS. The form factor product Fj(S)Fk(S) is now a constant for 
each value of S. The Debye formula takes now the form 

N N N  
J- j=1 k=l 

If we calculate the sinc function in advance for all the possible sphere pairs at each value of the 
scattering vector then the double sum is implemented as a simple vector summation of precalculated 
terms in a double loop, which can be very efficiently optimised by vectorising and parallelising 
compilers. 

Thus far, we have not compromised the accuracy of the calculation. We have simply shifted the bulk 
of the computation to the initial stage of the algorithm. The number of spheres in the structure that 
can be treated is limited by memory requirements of the array for the sinc function (required to aid 
vectorisation and parallelisation) which scales as K(n2/2-n), where K is the number of scattering 
vector values and n is the number of spheres. To adequately model large structures requiring very 
large number of spheres a further approximation is called for. We use the distance histogram 
approach suggested by Glatter (ref. 10). We detail the procedure here because of the drastic effect it 
has both on memory allocation and on calculation time. 

Pair distances are discretized in a histogram of bin size commensurate with the resolution of the data 
( - 100 times smaller than the high resolution limit). This effectively “jkes out” the sampling grid by 
an amount that would not be detected in the resolution range of the simulation. The pair distance 
matrix of rjk values now becomes a one-dimensional array of distances weighted by the number of 
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distances occurring in an interval of binsize, the bin population. The number of terms in the inner 
sum is now the number populated bins. The scattering formula becomes 

N Nbins 
US)= I,(S) + 2Fz(S) m(rk)sinc(2xSrk) 

j=l k= 1 
where m(n) is the bin population at pair distance rk and the limits of the sum are the number of 
distance bins. This method was used very effectively to interpret changes in the SAXS data of the 
iron carrying protein transferrin where domain movement has been shown to be involved in iron 
intake and release (ref. 12). 

We are now well equipped to be more ambitious in the application of the code. The opportunity 
arose in connection with the interpretation of S A X S  and electron microscopy data of microtubules. 
Microtubules are organelles which are found in all eukaryotic cells (ref. 13). They are involved in 
intracellular transport processes and in cell division. They can be described as hollow cylinders of 
some 24nm mean diameter and length of several microns. The basic building block is the tubulin 
heterodimer which is formed from the a and /3 subunits. The axial sequence of a-/3 heterodimers are 
called protofilaments. 

a b 

Figure 1. a) Solid sphere model of 3 turns of the 3-start helix of a 1Zprotofdament microtubule. The different 
shade spheres represent the a andp tubulin monomers. b) The experimental (circles) and fitted (line) SAXS 
patterns of taxol microtubule. Each monomer has been modelled by a group of spheres in an ellipsoidal 
envelope with the major axis at an angle to the cylinder axis (ref. 5). 

The tubulin monomers are arranged in a lattice of helical symmetry. Fig. l a  shows three turns of a 
3-start helical model of a 12-protofilament microtubule with single spheres for the monomers. It can 
easily be observed that several pair distances repeat, e.g., along protofilaments, along the helical 
paths, and so on. If the single sphere monomer is substituted by the group of spheres used to fit the 
monomer, pair distances within each monomer repeat in every other monomer. The number of 
identical pair distances can be precalculated from the symmetry parameters of the model structure 
and the distance histogram population can be updated accordingIy without having to compute every 
single pair distance. 

The details of the structural parameters obtained from simulations of the SAXS data of taxol and 
W-tubulin microtubules are given in ref. 5 .  To construct a model of appropriate extent and 
resolution some 40000 spheres were used. The fitting procedure involved iterative tilting and scaling 
of the tubulin monomer in the lattice. The drastic improvement in execution time brought about by 
utilising symmetry, made possible interactive runs of hundreds of conformations in refining the pitch, 
diameter, number of protofilaments, helical start-number and orientation of the monomer (Fig. lb). 
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DO i s inode+i , Natom-1 , Nnodes 
DO j = i + l  ,Natom 

dX=X(I)-X(j) 
dy=Y(i)-YU) 
dz=Z(i)-Z(j) 
di~t-ij = dx**2+dy**2+d~'*2 
dmax=amaxl (dmax,dlst-ij) 

ENDDO 
ENDDO 

Find global distmax on all nodes: 

CALL GSHIGH (dmax,l,swork) 

dmax=sqrt(dmax) 

DO i = inode+l Natom-1 Nnodes 
DO j = l + l , N a t o m  

dx=X(I>X(j) 
dy=Y(I)-Y(j) 
dz=Z(i>Z(j) 
d i ~ t ( j ) = ~ r t ( d ~ ~ 2 + d y ~ 2 + d ~ ' * 2 )  

ENDDO 

DO j = i + l , N a t o m  

ENDDO 

kbin= 05  + dil(j)lMnJze 
ndist(kbin) = ndist(kbln) + 1 

ENDDO 

Update histogram on alt nodes: 

CALL GISUM (ndist,maxblns,iwork) 

Figure 2. Schematic breakdown of the SAXS simulation code highlighting the parts which are executed in 
parallel. The distance extent is calculated first to set the minimum binsize permitted. This step can be omitted if 
the maximum distance extent is known and the binsize fixed at the start or for subsequent iterations. The 
modules on the right and left run sequentially on the root node. 

Fig. 2 gives a schematic breakdown of the algorithm which utilises the distance histogram 
approximation. It turns out that most of the processing time is spent on a rather simple task, the 
calculation of pair distances and the construction of the distance histogram. The parallelisation of 
this code is a straight forward case of coarse grain parallelisation in SIMD (Single Instruction 
Multiple Data) mode. Identical copies of the code are executed on different processors while the rest 
of the program is run on the root node. The array of sphere coordinates is apportioned to the 
different nodes for processing and the histogram values are brought together in the distance 
histogram array. Details of implementation of the DALAI code on the Intel iPSC/860 hypercube will 
be given elsewhere (ref. 14) together with a description of a graphics user interface which allows 
submission of the compute intensive part on a parallel machine while user interaction and graphics 
display of data is performed on a graphics workstation. The largest system processed so far is for 
500000 particles used to simulate aggregation and aging phenomena in silicate solutions (ref. 15). 
The computation time on 32 nodes of the Intel iPSC/860 was 4 hours. 

ELECTRON MICROGRAPH AND X-RAY DIFFRACTION PATTERN S IMULATION 

A transmission electron micrograph or indeed an X-ray radiograph gives the projection of the mass 
of the object under investigation. To compute the mass projection all that is required is to calculate 
the intersections of rays parallel to the projection axis with the object volume. The length of the 
intersecting cords multiplied by the mass density corresponds to the mass penetrated by the incident 
radiation (electron or x-ray). To mass project a model structure at a given projection angle, 
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coordinates and sphere radii are first normalised for the extent of the image dimensions, typically 
1024x1024 pixels. It is a simple matter of trigonometry to calculate the length of the intersecting 
cords for each sphere. Pixels within a sphere "footprint" are weighted by the thickness (mass) of the 
sphere at that pixel. The mass value of that pixel is added to the previous value generated for pixels 
of any other spheres that are intersected by the same projection ray. 

This simple algorithm has been employed to generate mass projections of microtubule models 
where, for a given number of protofilaments and other helical structure parameters, it was used to 
demonstrate the appearance of density fringes of characteristic repeat in cryo-electron micrographs 
(ref. $16). Fig. 3a shows the mass projection of the microtubule model of Fig. la. The number of 
spheres used in the microtubule EM simulations was relatively small (a few thousand). In a different 
application, however, the model making algorithm produces several millions of spheres. It was used 
to create structural models of the muscle fibre (ref. 17) consisting of three main structural 
components, the actin thin filaments, the myosin backbone and the myosin heads, some 20 million 
spheres in total. The objective was to simulate the X-ray diffraction pattern that would result from 
such a structure and compare it with experiment (ref. 7). This can be achieved by generating mass 
projections of the structure at a series of angles about the long axis, then Fourier transforming each 
projection and accumulating the Fourier intensities. The computational task is quite formidable as 
each projection requires several minutes of CPU time on a Convex-220 mainframe and some 60 
projections at symmetry related angles are needed to match the experimental resolution. In addition, 
the procedure needs to be repeated for different structure conformations representing the time 
evolution from the rest state to the fully activated, tension producing state of the fibre. Fig. 3b shows 
the resultant difference diffraction pattern for two end states. 

Figure 3. a) The mass projection of the microtubule model shown in Fig. la. Notice the density variation across a 
single unobstructed sphere and its overlap with its neighbour (top) and the higher density of he-of-site overlap 
at the centre and the edges of the cylinder. The slight off-axis tilt of the protofilaments results in the appearance 
of density fringes repeated at an interval of several cylinder diameters (ref. 5,14). b) Calculated difference 
diffraction pattern of muscle fibre. The structure extent was 1 cubic micron and some 20000000 spheres were 
used to model the three components, actin filaments, myosin backbone and myosin heads. 

An important feature of the mass projection algorithm is that it has no preference for the order in 
which the projection of individual spheres is computed. Sphere coordinates produced by the 
structure modelling program can be organised in any convenient way, e.g., in terms of the structural 
component they form or in terms of a slab of space they occupy. The code then reads as many 
coordinates as can be handled within the available memory, processes them, and then updates the 
two dimensional array containing the whole projection. A further time saving step can be taken: 
Since there are only a few different types of spheres, precalculated templates for a given sphere type 
and image resolution are simply copied onto the projection array at the appropriate projection 
centre. 
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Details of the parallel implementation have been described elsewhere (ref. 18). Apart from the 
initialisation and final output stage, the parallel mass projection code is a simple multiple copy of the 
sequential code. The load is balanced evenly and all processors are kept busy equally at all times. 
Processing time is now of the order of a few minutes for each projection. Just as for the parallel 
implementation of the SAXS simulation code it is a classic case of coarse-grain SIMD parallelisation 
with virtually no interprocessor communication. Apart from machine specific code for distributing 
data to each processor and for summing the partial results, the rest of the code is identical to the 
sequential one. 

CONCLUSIONS 

We have shown that computer simulations of large macromolecular structures studied 
experimentally by three different but complementary structural techniques, small angle x-ray 
scattering, electron microscopy and x-ray diffraction, can now be realised in affordable time scales. 
By using simple coarse-grain parallelisation techniques we can take advantage of the raw computing 
power of parallel computers. The size of the structure or the structural detail can be increased by 
scaling up the number of processing elements. Both algorithms and their parallel implementations 
are applicable to any structural system which is adequately represented by a sphere model. We can 
now concentrate on developing structure modelling schemes. For the case of SAXS of proteins, of 
particular interest is the modelling of domain movements and real time interaction with the model 
being manipulated on a graphics workstation. For the case of the muscle fibre, the challenge is to 
include additional components, such as troponin and tropomyosin which have not been taken into 
account so far, and to improve the resolution of representing the actin and myosin molecules. The 
combination of high spatial or temporal resolution experimental data from synchrotron radiation 
sources and computer modelling of the kind we have described is a very promising one. 
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