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Impedances of electrochemical systems: 
Terminology, nomenclature and 
representation-Part I: Cells with metal 
electrodes and liquid solutions (IUPAC 
Recommendations 1994) 

Abstract. This document provides an inventory of the parameters that are in use to describe 
impedances of electrochemical cells. The definitions of these parameters are given, as well 
as recommendations for their terminology and nomenclature. Where relevant, experimental 
determination of a parameter and limitations to its validity are briefly discussed. 
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INTRODUCTION 

The method of impedance measurements is widely used in many fields of electrochemistry, e.g. 
electrode kinetics, double-layer studies, batteries, corrosion, solid-state electrochemistry, 
bioelectrochemistry (especially membranes). It is one of the linear response methods, which means 
that the system is perturbed by a sine wave current or potential of such a Small amditudq that the 
response contains only the first-order terms of the Taylor-expanded non-linear current-voltage(-con- 
centration) relationship. 

Generally, two "modes" of performance of the method can be distinguished: 
(i) Measurement of the impedance as a function of the frequency of a small-amplitude sinusoidal 

potential perturbation superimposed on a direct potential bias. The impedance spectrum is 
measured at varied values of the direct potential. This method is named "Electrochemical 
Impedance Spectroscopy", or (less commonly) "Impedance Voltammetry". 

(ii) Superposition of a single-frequency sinusoidal potential on a scanned or stepped direct potential 
and measurement of the responding sinusoidal current as a function of the direct potential. This 
technique is named "Alternating Current Polarography", or (less commonly) "Alternating Current 
Voltammetry". In this case essentially the reciprocal of the impedance, called admitt- , is 
obtained. 

Closely related to the impedance technique are the other linear response relaxation techniques: the 
galvanostatic and potentiostatic pulse tech -. The mathematics of these methods are most easily 
treated by means of the Laplace transformation [see e.g. refs. 1-31, which has led to the definition of 
the ~Derational bpedance as the quotient of the Laplace transformed potential and the Laplace 
transformed current. In terms of this concept, the methodology becomes similar or even identical to 
that of the complex impedance obtained in the case of sine wave perturbation, though the latter has 
still the advantage of instrumental rejection of higher order contributions and noise, and of the ability 
to improve precision by signal averaging. 

Another class of related techniques are the second fesponsg methods, like second-harmonics 
alternating current polarography, [ref. 41, harmonic impedance spectroscopy [ref. 51, faradaic 
rectification [ref. 61 and demodulation voltammetry [ref. 61. The information obtained from these 
methods, based on the non-linearity of the current-voltage characteristic, is highly complementary to 
the first-order information. 

Due to the variety of applicabilities and performances, stemming from different "schools", there is at 
present a serious lack of uniformity in the literature concerning both terminology and nomenclature 
used to characterize impedances of electrochemical systems. Also there is some controversy about the 
meaning - or rather the meaninglessness - of the so-called 'kauivalent circuit". 
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The purpose of this document is to make an inventory of the parameters that are in use to describe 
impedances of electrochemical systems, and to compare their meaning. Concomitantly 
recommendations are given of the preferred symbols, terminology and nomenclature. 

The systems considered in this Part I are typically electrochemical cells with a working electrode 
(sometimes called "indicator electrode"), a reference electrode and a counter electrode, in contact with 
a liquid electrolyte solution. Unless stated otherwise, 
- the experimental set-up is constructed such that exclusively the impedance of the working electrode 

is measured; 
- the solution contains a supporting electrolyte; 
- the working electrode is a metallic conductor, or a non-metal with comparable conductivity; 
- electrode surfaces are ideally homogeneous (effects of surface inhomogeneity will be treated 

separately in section 10). 

Major applications of such cells are in: 
- fundamental electrochemistry; 
- electroanalytical chemistry; 
- corrosion science; 
- electrodeposition; 
- electrochemical synthesis; 
- energy storage and conversion; 
- bioelectrochemistry. 

For some processes the representative impedance may depend on the geometrical shape of the 
electrode. Then the following "ideal" cases will be distinguished: 
- planar electrode; 
- spherical electrode (radius rg); 
- cylindrical electrode (radius ro); 
- thin-layer cell; in this case there are two identical working electrodes. 

For the basic quantities needed to define the impedance parameters we have employed as much as 
possible the notations recommended in "Quantities, Units and Symbols in Physical Chemistry" 
[ref.7]. A list of these quantities is given in Appendix A. A list of the impedance parameters is given 
in Appendix B. Other IUPAC documents consulted are refs. 8 and 9. 

As for references to the literature, this document is mainly based on textbooks, monographs and 
reviews [refs.ld, 10-181, from which further references to the original literature are available. Only 
with regard to the relatively novel theories dealt with in Section 10, some references to recent 
publications are added. 
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1 GENERAL CONCEPTS 

The concept of the electrical impedance was originally introduced to describe the response of electric 
networks to perturbations with sinusoidally alternating currents or voltages. Networks consisting of 
passive elements as a resistance (R), a capacitance (C), a self-inductance (L), are typically hsix 
system, which means that the current response Z(t) to an applied potential perturbation U(t )  is 
determined by a linear differential equation 

d"-'U + a1 - + ... bmZ = a0 -p dtn-l + *.*anU + bl - dn U dm-'Z dmZ 
dr dt m-l 

bo - 

From this equation it follows that, if U(t)  is sinusoidal, i.e. 

U ( t )  = AU = Um sin (a) 

then Z(t) must be sinusoidal also: 

Z ( t )  = hl + Zm sin (W + 29) = Zm [cos 29 sin w + sin 29 cos W ]  

where 29 is the -, also called -. 

Al - A I  - network 
I I 
I I 
L,-- - -- A l J - - - - - - A  

Fig. 1.1 Schematic representation of the voltage across and the current 
flowing through the network 

1.1 Impedance and admittance 
Any impedance or admittance is defined by an amplitude ratio and a phase angle. This enables to treat 
impedances and admittances as complex numbers. 

The impedance is defined as 
2 = 2' + iZ' 
Z'= (Um/Zm)cot 29 
Z" = Um l Zm) sin 29 

(1.1) 
(l . la)  
( l . lb) 
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It follows that 
Z/Z '  =cost9 

( ( X ) 2  + ( Z y } 1 / 2  = IZI = Urn/Zm 

N.B. In the electrochemical literature the notation ZZ-iZ'' is frequently employed instead of the 
formal notation above. This is related to the fact that often in electrochemistry the value of 29 is 
negative, combined with the desire to have 2' positive. In view of the widespread importance of the 
impedance method, also outside electrochemistry, the notation of eqn (1.1) should be prefemd. 

The admittance is defined as 
y = r + i y l =  z-' 
I" = (Zm/Um) cos (-29) 
Y" = (Zm/Um) sin (-29) 

(1.2) 
(1.2a) 
(1.2b) 

It follows that 
YIY = ZIZ! = - cot 29 

( ( Y y  + ( Y ' I ) y 2  = IYI = ZmIUm 

Y' = Z' / { ( z y  + ( 2 1 2 )  

Y "  = -2  /((zy + ( Z y }  

Impedances and admittances of networks can be calculated by means of Srchhoff s la W& 

a) elements in series (see Fig 1.2a): 
z = z1 + 22 + z3 (1.3a) 

b) elements parallel (see Fig. 1.2b): 
1 1 1 = - + - + -  1 - 

z Zl 22 2 3  
Y = Y 1 +  Y 2  + Y 3  

with due observance of the mathematical rules of complex numbers. 

a) 

Fig. 1.2. a) Elements in series b) elements parallel 

(1.3b) 

(1.4a) 

(1.4b) 
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1.2 Operational i m p e h c e  and admittance 
When the perturbation is not sinusoidal, but some other function of the time t, the response as a 
function of time may be quite complex. It is found as the solution of (a set of) differential equations. 
A relatively simple method to find this solution is the method of Laplace transforms. In formal 
notation, with t = the Laplace operator and s = the Laplace parameter: 

u = U ( 0 ,  
I = Z(t) , &(I) = I(s) 

t ( v )  = vo 

By definition the operational impedance is, for small pertubations, i.e. a linear system: - -  
Z(s) = AU(s) I AZ(s) (1.5) 

and the operational admittance 
Y(s) = z(s)-' = hl(s) I m 

It can be shown that, for s = iw, Z(iw) = Z and Y(iw) = Y, where 2 and Y are defined in eqns 
(1 .1)  and (1.2), respectively. These equalities are particularly useful, a) to derive expressions for 
impedances or admittances, b) to relate methodologies of different experimental techniques to one 
another. 

1.3 Impedance of electrochemical systems 
According to the above definitions, the unit of the impedance is R, and of the admittance f2-1 or S. In 
the electrochemical literature the symbols Z and Y nearly always refer to the unit of interfacial area, 
i.e. the units of Z and Yare &2 m2 and S m-2, respectively. Clearly this is brought about by replacing 
the current I by the current density j in eqns (1.1) through (1.6). From here on this will also be 
done in this document. Furthermore, the symbol E will be used for the potential of the working 
electrode. 

A problem with electrochemical systems is that usually the fundamental relationship between the 
current density and the electrode potential is non-linear. For example, a faradaic charge transfer 
process leads to a relationship containing exponentials of E. Also, the double-layer charging process 
involves the double-layer capacitance, the value of which is a function of E. It is required, therefore, 
that the perturbation be so small that the current-potential relation may be linearized. This restricts the 
magnitude of Em in hE = Em sin ( ~ r )  to a maximum of ca 5 mV, provided that measuring devices 
with harmonic rejection are used.The amount of 5 mV is to be considered only as a global indication. 
The exact limit in some particular case has to be estimated ~IQB&UU ' * from the experimental data, by 
examining the extent of their potential dependency. 
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A second complication is that the j (E)  relation is frequently implicit, because of the presence of other 
variables, like co and CR in the faradaic rate equation. The way to set up a derivation of the impedance 
or the admittance is then as follows. 
Let the j (E)  relation be of the type 

where xi =fi 0') and yi =fi (E) .  Then for a small perturbation Aj or AE we have from the first-order 

Taylor expansion: 

Substitutions of Axi = f i (Aj)  and Ayi = f i ( W  lead to the explicit relationship between Aj and AE. 

The partial derivatives are the defining the admittance or impedance of the system. This 
procedure will be the fundamental basis of this document. 

In an electrochemical system a variety of processes can contribute to the current-potential relationship 
and thus to the impedance of the system. Their effect results either into a representative parameter in 
the impedance expression, or into a particular meaning of a parameter representing an other process. 
In the Chapters to follow it will be tried to give a systematic survey of these effects, as much as 
possible in an order of increasing complexity. 

Not only is it necessary to categorize the symbols and nomenclature of the impedance parameters 
themselves, but also of the most useful notation to describe their potential dependence. 

1.4 Representation of data 
For a long time, impedances of electrochemical systems have been measured using impedance 
bridges, comparing the unknown impedance with that of an electrical circuit, usually consisting of 
precision resistors and capacitors, placed either in series (R,, C,) or in parallel (R,, C,). This resulted 
in the habit of reporting data in terms of Rs, C, or R,, C, respectively, as a function of w or E. This 
habit should be abandoned, because it is improper to assign frequency dependence to resistances and 
capacitances. In fact this terminology is no longer commonly employed, since more and more 
measurements are being performed using "network analyzers" or "frequency response analyzers". 
These instruments give as primary data either IZI, 6 or 2, Z", with the relationships: 

IZI = { ( 6 ) 2  +(z")2}1'2 t 29 = arccot (Zl/Z") 

z = IZI cos 6 Y Z" = IZI sin 6 
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Graphical representation of primary ("raw") impedance data can be quite useful from a diagnostic 
point of view. The most common form of representation is the complex -plane diagram, i.e. the plot 
of Z against 2 at varied frequency w. An example is shown in Fig. 1.3a. Such a plot is known 
under different names: 

a) 
b) 

c) 
d) 

"Argand diagram"; general for representation of complex numbers, 
"Nyquist diagram"; more particular in use for representation of complex transfer functions of 
electronic control devices, 
"Sluyters diagram"; more particular in use in electrochemistry, especially corrosion literature. 
"Cole-Cole plot"; in analogy with the graphic representation of the dielectric constant. 

In order to avoid confusion it will be preferable to use the terminology "complex-plane impedance 
diagram", c.q. "complex-plane admittance diagram". 

An alternative for the complex-plane diagram is the so-called "Bode diagram", in which log IZI and 6 
are plotted against log w (Fig. 1.3b). Then the frequency-dependence is more clearly visible, and the 
distinction impedance vs admittance is less relevant : log I l l  = - log IZI. 

-z''l t 

- Z' - log 0 

Fig. 1.3 a) Complex-plane impedance diagram b) corresponding Bode diagram 

The information obtained from these representations can be complementary: the Bode diagram will 
(roughly) indicate the number of separate elements constituting the total impedance (strictly only if an 
equivalent circuit applies, like the one in Fig 1.3a), whereas the complex-plane impedance diagram 
reveals their possible nature, e.g. R, C, etc. 

The use of a computer enables three-dimensional plots to be made of the impedance (or the 
admittance), i.e. with the imaginary and the real components as well as log w as the coordinates (see 
Fig. 1.4). 

Although it is true that two- and three-dimensional plots give rapidly a qualitative insight, their value 
for quantitative analysis shouId not be estimated too highly. They are just of additional help to 
examine internal consistency of a set of data points, and to compare the experimental behaviour with 
theoretical curves obtained by fitting. 
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Fig. 1.4 Three-dimensional impedance plot [ref. 51 

N.B. Almost without simple exception electrochemical systems exhibit capacitive behaviour which 
leads to negative 2'. This has brought about the habit of plotting -2'' on the ordinate, in order to have 
the impedance locus in the first quadrant. 

Besides the frequency, the mean potential bias is an important variable in impedance studies. A great 
deal of methodology available at present originates from the more analytical method of a.c.- 
polarography, where actually the amplitude and the phase angle of the current response to an 
alternating voltage perturbation are recorded at a single frequency, as a function of the mean potential. 
Symbols and notations in this field are quite different from those in the impedance treatments. It will 
be obvious, however, that in many cases the same phenomenon or process is being described. The 
a.c. polarogram or more general, the a.c. voltammogram is suitable for diagnostic purposes, based 
on the potential dependence of such phenomena or processes. 

Quantitative interpretations, of course, rely on numerical data analysis, as a function of both the 
frequency, o, and the mean potential, E. Sometimes in such analyses more specific graphical 
methods are employed. 

1.5 Modelling of cell impedances; equivalent circuits 
The eqns ( 1.7) and ( 1.8) are the fundamental basis for the theory of cell impedances. They have to be 
completed with models that explicitly represent the functions describing all Axi's and Ayi's. 
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Frequently it occurs that two or more iadeDeuknt processes contribute to the function (1.7) 
describing the current density. Then it is more convenient to treat these processes separately, and to 
combine them afterwards, by means of an Wivalent c ircuit. The most well-known example is the 
case where a charging current and a faradaic current pass an electrode/electrolyte solution interface, 
while the total current is conducted by the electrolyte (Fig. 1.5a) 

Fig. 1.5 a) Equivalent circuit b) Equivalent circuit after 
ZR : solution impedance 

ZF : faradaic impedance 

Randles and Ershler 
Symbols: see text : double-layer impedance 

In Fig. 1.5a the three impedances are purposely uupecified. The diagram merely serves to represent 
the assumption that the two interfacial processes proceed m&gwddy and parallel to each other, and 
together in series with the conduction process. If, on the contrary, these processes mutually interact 
(one then says they are coupled), assigning an equivalent circuit is much less obvious, and should be 
either omitted or done with great care. 

In some cases the impedance corresponding to a certain electrochemical process has a characteristic 
behaviour in the same way as simple passive electronic elements like the resistor and the capacitor. 
This holds for example for the conductivity, the faradaic charge transfer and the double-layer 
charging represented by respectively Rn, R,t and Cd in the well-known Randles-Ershler equivalent 
circuit (Fig.l.Sb), which could be considered as an explicit version of the circuit in Fig.lSa, valid 
under certain conditions. This example already shows that such an equivalent circuit is rather 
artificial: it also contains the Warburg impedance representing the diffusion of the electroactive 
species: 
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In fact, this impedance is equivalent to that of an infinitely large network ("transmission line") as 
shown in Fig. 1.6. 

--- 
W =  

- T T T T T - - -  
Fig. 1.6 The equivalent circuit of the Warburg impedance 

The electrochemical community has accepted the Warburg impedance as a "basic element" of an 
equivalent circuit. Extrapolating this to more complex cases, each impedance expression can be 
"visualized", using both "accepted elements" and "elements to be designed". Such a tendency, 
however, should be discouraged, unless its usefulness is obvious in a certain case. 

It is definitely wrong to analyze experimental impedance data by just fitting to an equivalent circuit 
corresponding to a network chosen by trial and error. The reason for this is that the impedance 
response of several equivalent circuits can follow exactly the same function of frequency, only with 
different meanings of the corresponding elements. In addition, a fit will always be successful if an 
unlimited number of parameters is admitted. Without having an a priori model, the meaning of these 
parameters is undefined [refS]. 

2 THE OHMIC RESISTANCE 

2.1 Principles 
The total current crossing a metaYsolution interface, is conducted through the solution by migration of 
ions. This process obeys Ohm's law up to very high frequencies. 

The &tion r a  , Rs, is proportional to the resistivity, p, and depends on electrode and cell 
geometry: 

(i) planar : R, = pa 

(ii) spherical : R , = p *  
a+ ro 

(iii) cylindrical : 
a+ ro R, = pro ln- 

'0 
(2.3) 
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where a is the distance from the electrode surface of the point at which the ohmic potential drop is 
(virtually) measured, and ro is the radius of curvature of the electrode. In eqns (2.1) - (2.3) the unit 
ofRs i s Q m 2 .  

The same current is conducted through the metal of the electrode and through the connecting leads by 
transport of electrons. This gives rise to the mta l  resistancp , Rm, which is added to Rs to give the 

o h c  resistance RQ . .  
which appears in series with the 

z e l  
as depicted in Fig. 2.1. 

Zel 
4 2  

Fig. 2.1 Equivalent circuit showing the role of the ohmic resistance 

2.2 Other notations that have been used 
- series resistance, Rs; we recommend to employ R, to denote the solution resistance. 
- bulk or solution resistance, Rb, R, ; not recommended because subscripts are less recognizable, 

and metal resistance is not implied. 

2.3 Limitations 
- Theoretically, the solution ceases to behave as a resistance at very high frequencies (Debye - 

Fakenhagen effect). 
- In practice, the resistive behaviour is affected by non-ideality of the cell system, due to 

inhomogeneity of the electrode surface, edge and screening effects, etc. [see also Section 101. 
Also connecting wires are not ideal resistors, but involve some self-inductance, stray capacitance, 
etc. 

2.4 Experimental determination of RQ 
a) If Z& is a pure capacitance [see Section 31, directly from the impedance at any frequency: RQ 3 2' 
b) If Zel is more complex [ w Z  = f(w)], by extrapolation of either 2 =flu) to w = - or of the 

complex plane plot to its locus at w = m: 
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lim ( Z ) = R n  (2.4) 
o + =  

Sometimes it is favourable to employ devices that enable (by means of "positive feedback networks") 
the potential drop across the ohmic resistance to be compensated. It should be realized that this 
compensation necessarily is always less than 100%. The remaining fraction of it can be treated as if it 
is the ohmic resistance. 

2.5 Interference from the geometric capacitance 
The electrochemical cell is always constructed of two (electronic) conductors, the working electrode 
and the counter electrode, separated by an electrolyte solution. Thus there exists a 

tric capacitance c g  

c g  = Era 1 dg (2.5) 

where dg is the characteristic distance between the two electrodes, E is the relative permittivity of 
the solution, and is the permittivity of vacuum. This capacitance appears in parallel with the series 
connection of the electrode impedance and the solution resistance, as is shown in Fig.2.2. 

Fig. 2.2 Equivalent circuit showing the role of the geometric capacitance. 

Apart from exceptional cases, Cg has a very small value, typically F for usual electrochemical 
cells. Therefore, it affects the determination of Rn only at quite high frequencies, i.e. beyond the 
value for which o Rn Cg << 1. However, see also Section 3.6. 
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3 THE DOUBLE-LAYER CAPACITANCE 

3.1 Principles 
The surface layer of the metal bears an excess charge density, &, in equilibrium with an excess 
charge density, 8 = -&, on the solution side of the interface. Generally, & is a non-linear 
function of the interfacial potential, E. Therefore, one has defined the 

al double-laver c a p a c i w  c d  

At an ideal polarized electrode [ref.9], indeed, the potential may be changed independently of the 
other variables, and thus, for a small potential excursion A,?? 

Ajc=d(AbM)/dt = Cdd(AE)/dt (3.3) 

where jc is the (double-layer) charging current density. This leads to the 

double-laver impedance Zc 
= - i ( d d ) - 1  

which specifies (part of) the interfacial impedance, according to Fig.3.1. 

Fig. 3.1 Equivalent circuit showing the role of the double-layer capacitance 

(3.4) 

3.2 Other notations 
In the recommended symbol, the subscript d stands for "differential". Frequently found alternative 
symbols are: 
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- C, without subscript; less recommended because it is the accepted symbol for a real capacitor in 
electronic networks, with the definition C = Q/V. 

- Cdl, the subscript stands for "double-layer"; not recommended because this indication seems 
superfluous. 

3.3 Limitations 
- Assignment of a single capacitance value per unit of interface area is only permitted if the metal 

surface is homogeneous. Otherwise a distribution of capacitance has to be postulated, which 
invalidates the representation of the total impedance by a resistance and a capacitance in series. 
This complication will be considered in Section 10. 

- Pure capacitive behaviour holds, if any relaxation of the solution part of the double-layer is 
negligible. Influences of slow relaxation are treated in Section 7. 

- Other interfacial processes can be represented by an impedance placed in parallel to the double- 
layer capacitance, only if they do not affect the double-layer charging process to a significant 
extent. See also Section 8. 

3.4 Experimental determination of c d  

a) If there is no other interfacial process: directly from the impedance at any frequency: 

b) When there are other interfacial processes: either by extrapolation of Z'lw to w = -, or of Y el 

- = cd.  

to o = m, or by numerical fitting to a proper model. 

3.5 Intelference from the geometric capacitance 
As in Section 2.5, the geometric capacitance Cg will affect the correct determination of c d  at high 
frequencies. However, its influence on Z" in the circuit of Fig. 3.2 is more severe than on Z. This 
influence becomes negligible for w R (Cd Cg)*/* << 1. 

Fig. 3.2 Equivalent circuit showing the role of the geometric capacitance 
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4 THE CHARGE TRANSFER RESISTANCE 

1847 

4.1 Principles 
This section is devoted to the occurrence of an electrode reaction of the general type 

k f  

k b  
V O O  + V P  P + VQ Q + ... + ne- VRR + VSS + ..., 

which may proceed by any kind of charge transfer mechanism, provided that the intermediates are 
ustable. The nature of the reaction mechanism determines the expression for the rate ea - u m ,  which 
is, therefore, kept implicit as much as possible: 

j F  = f (E, co ,  cp, ...) CR, cs ...I 

The first order Taylor expansion gives 

AjF = (djF /dE)AE + C (djF /dcI)AcI 

or 
AE = (djF I%)-' (AjF - ( d j ~  /&I)  ACI} 

(4.la) 

(4. Ib) 

The summation term over all Aq's gives rise to mass transfer impeL..nces, to be discussed in sections 
5 and 6. The first term indicates that a part of the interfacial potential appears across the 

r resistance Rct 
Rct = (ajF /dE)-' 

y$---J!!:J z;nt I 

Rct L------l  

Fig. 4.1 Equivalent circuit showing the role of the charge transfer resistance 

(4.2) 

4.2 Other notations 
In the recommended symbol, R stands for "resistance" and the subscript ct for "charge transfer". 
This symbol is widely accepted. Alternatives are: 
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8 ; this symbol was widely accepted in earlier literature, but is less recommendable, because it is 
less characteristic, and also because it is accepted as the symbol for surface coverage, and as a 
time variable. 

RR; this symbol is proposed in solid-state electrochemistry, denoting the "reaction resistance". Not 
recommended, because the subscript R is frequently used to indicate that a parameter pertains to 
the reduced component of a redox couple. 

Rp; this symbol was used in connection to the earlier name "polarization resistance", which is 
uncommon at present. 

Rt ; this symbol is used in corrosion literature. 

4.3 Explicit expressions for Rct 
Treatments in the literature are usually restricted to (pseudo) monomolecular electrode reactions, i.e. 
of the type 

Ox+ne- 2 Red 

Then, for a great deal of possible reaction mechanisms, the rate equation can be written [ref. 171: 

The reaction orders 0, o', rand r' are. related to the v by 

o - o'=  r - r ' = l / v  (4.5) 

The potential dependence of the rate cons tant, kf, is defined by the m o n a l  c b  tr- r 

wefficier& 

a= -d (In kf) / dq (4.6) 

From the definition, eqn (4.2), of the charge transfer resistance it follows that 

RCC1 = (n2F2 / RT)kf [a (I?~)'(?R)~' + (V-' -a) (To)' ' (TR) e O l V I  (4.7) 

The concentrations to be inserted into the term between the brackets are the mean surface 
concentrations, holding at the applied mean potential, Edc. At the equilibrium potential, Eeq, the 
expression for Rct can be simplified to 
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Rct-l = (n2$ / R T ) k f  (cO*)' ( c R * ) ~ ' I  v 

= (nF IRT) j o t  v (4.8) 

where j o  is the &ge current dens' lty. 

The formalism expressed by eqns (4.3) to (4.8) is applicable to the following types of mechanisms 
[ref. 171: 

A series of consecutive monomolecular elementary steps, one of which is rate-determining, 
Then 0' = r' = 0, v =  1 and a is a constant, 0 c a c 1.  

A series of consecutive monomolecular elementary steps, of which two or more are rate- 
determining. Here also o'= r' = 0, v =  1, but a becomes a function of the mean potential. 

A series of consecutive monomolecular and bimolecular (e.g. dismutation of recombination) 
steps, of which only one is rate-determining. The reaction orders and the stoichiometric number 
are determined by the nature of the mechanism and a is a constant. 

If the mechanism contains both monomolecular and bimolecular steps and more than one of 
them is rate-determining, generally only an implicit formalism can be designed, and the 
expression for Rct has to be derived for each particular case. 

Potential dependence of Rct 
If the electrode potential is different from the equilibrium potential, the mean surface concentrations 
have to be derived from the appropriate description of the direct current (d.c.) process. The following 
methodology is most useful. 

a) A special notation is introduced for the 
c h a r g e e r  resistance at a D l w o d e  under Nerns tian d.c. conditions 
For this case the mean surface concentrations are expressed by 

Rct, N 

(4.10) 

The potential dependence of Rct,N is given by 
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(4.11) 

This relationship holds, irrespective of the mode of d.c. perturbation. It is given here for the 
"general case" (iii) in Section 4.3. In the literature, it is found only for the more common cases 
(i) and (ii), i.e. v = 1, o = 1 and r' = 0 [refs. 2,4]. The meaning of the symbols in eqn (4.1 1)  
is given in Appendix A. 

b) At a non-planar electrode (e.g. spherical, or cylindrical) and/or under non-Nernstian conditions 
the potential dependence of Rct is expressed as 

where F(tm) is an expression depending on the experimental conditions. Examples can be 
found in the literature [refs.2,4]. Alternatively, F(t& can be obtained numerically by means of 
digital simulation [ref. 121. 

1. Under extreme conditions, d.c. mass transfer is non rate-determining ("d.c. irreversible case 
Then automatically the faradaic potential region is split into a cathodic and an anodic part, so 
that: 
anodic: RcC1 = (nF/  R T )  (v-' -a) i j ~ , ~ l  (4.13) 

* 11 c) 

cathodic: RcC1 = (nF/  R T )  a ijF,cl (4.14) 

j ~ , ~  = nF kf (cO*)O(cR*)" 

4.5 Interpretation of R,t 
a) UnderNernstian d.c . conditions and in the more common case of a linear rate equation (v = 1, 

o = 1, r' = 0), the forward rate constant kf is obtained directly by using eqn (4.1 1); kf = f ( E )  
yields information on the reaction mechanism. 
Under non-Nernstian d.c. conditions, but with a linear rate equation, both kf and a appear 
explicitly in the expression for Rct. Usually numerical fitting (to a pre-supposed model) is 
required to evaluate kf (E) and a (E). 
If not priori a linear rate equation can be assumed, extreme care is needed to obtain the 
reaction orders, a (E) and kf (E).  It may occur that the results are not unambiguous [ref. 61. 

b) 

c) 
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In these pre-supposed models non-specific and possible specific double-layer effects, being 
potential-dependent, have to be accounted for. These effects may lead to anomalous values of 
a, i.e. a < 0 or a > 1. In extreme cases this results into negative Rct values, according to eqn 
(4.7). 
Complicated rate equations can also result if the charge transfer reaction proceeds via adsorbed 

If two or more independent faradaic processes occur simultaneously, their impedances appear 
in parallel, as shown schematically in Fig. 4.2. 

of 0 and/or R. 

L----l -;:--!! 
r---- 

I Zm t 
L,,,,d 

Fig. 4.2 Equivalent circuit in the case of two faradaic processes occurring simultaneously 

If the mass transfer impedances are negligible, an overall Rct will be measured, corresponding to 

Rct-l = Rct,J-I + RCt,f1 (4.15) 

4.6 Experimental determination of &t 

a) If the mass transfer impedance is negligible in the entire &range, from the semicircle in the 
complex-plane diagram, or from the electrode admittance, see Fig. 4.3. 

Fig. 4.3 Graphical determination of Rct in the absence of mass transfer control 
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b) If the mass transfer impedance is not negligible (at all frequencies), by numerical fitting; a 
model is needed for the frequency-dependence of &t. 

N.B. In both cases the analysis is more complicated if the electrode surface is not ideally smooth 
(see Section 10). 

5 THE MASS TRANSFER IMPEDANCE 

5.1 Principles 
Any interfacial process, consuming and/or producing matter, involves mass transport of the species 
concerned. Basically, the flux JI of a species I is governed by the three possible processes: diffusion, 
migration and convection, represented in this order in the flux equation: 

where 3 is the velocity of the medium. In addition, the species may be produced or consumed by a 
homogeneous chemical reaction at a rate q. Then 

The flux J I , ~  at the electrode surface (rigorously, its vector component perpendicular to the surface) is 
related to the rate of the interfacial reaction, v: 

JI,o = “I v (5.3) 

where the stoichiometric number, y, is positive for a reactant, negative for a product. 

General solutions of this set of equations are rather complex. If sufficient supporting electrolyte is 
present, the second term in the flux equation can be neglected. Then the Laplace transformation can 
be applied, finally resulting in a relationship of the type 

where Aq(f) is the fluctuation in the interfacial concentration due to a small amplitude perturbation, 
and Av(f) the corresponding fluctuation in the reaction rate. This relationship is needed to eliminate 
A&) from the Laplace transform of the Taylor-expanded rate equation: 
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 process 

(5.6) 

r 

- Zmt,A - zmt,B - zm,c - 

This formalism is general but, in electrochemistry, it is usually applied to particular processes like 
faradaic charge transfer (Section 6) or to adsorption of minority species (Section 7). In both cases a 
current A j  proportional to Av is flowing, so that the right-hand side of equation (5.6) predicts the 
corresponding impedance: 

Evidently Z(s) is a series connection of the impedance corresponding to the process itself and the 
individual mass transfer impedances, as sketched in Fig.5.1. 

Fig. 5.1 Equivalent circuit representing the impedance due 
to a process involving three species A, B and C 

Eqn (5.7) is of great importance for the understanding of the role of mass transfer in electrochemical 
systems. It is one of the basic concepts in the unified approach to linear electrochemical systems, 
designed by Rangarajan [Ref. 31. For sinusoidal perturbations, s i o  is substituted into eqn (5.7) in 
order to obtain the complex impedance. 

5.2 Cases of diffusion control 
Specifications offl(s) andfl(io) are known for a number of idealized cell geometries, i.e. models: 

(9 SerrJl ’-infinite linear diffusion 
fI(S) = (Dp)-”2 (5.8a) 

The corresponding mass transfer impedance is the 
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Tn equivalent circuits the Warburg element is represented by the symbol shown in Fig. 5.2a. 

‘cal diffusion (ii) Serm-mfimteen . .  . 
- -  DI 
f I (s) ‘0 

- (DIs)”~ + - 1 (5.1 la) 

The corresponding &t is a Warburg element in parallel connection with a “resistance“, having the 
value (‘0 / 01) (av / ac,) (a j /  aE)-’ , see Fig.5.2b. 

Fig. 5.2 Equivalent circuit representation of the cases of (a) semi-infinite linear diffusion 
and (b) semi-infinite spherical diffusion 

. .  (iii) Bounded d i f f u u  
In this model convection (due to stirring) is accounted for by the boundary condition Ac = 0 at a 
distance 6 from the interface. The same boundary condition applies to a thin layer cell with identical 
planar electrodes a distance 26 apart. 

(5.12a) 
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Assigning an equivalent circuit is senseless in this case. A complex-plane plot of Zmt -f(iw) is 
illustrative (Fig.5.3) in showing that deviation from Warburg behaviour arises at lower frequencies. 

Zm t‘ 

Fig. 5.3 Complex-plane representation of the mass transfer impedance in the case of 
bounded diffusion. The numbers indicate the values of zb 

5.3 Coupled homogeneous reactions 
If in the homogeneous solution an equilibrium exists of the type 

k A 
A 2  I 

k-A 

- -  k A  - K A  
k-A 

this equilibrium is perturbed in the region where I has a concentration gradient due to the interfacial 
process, Treatments in the literature usually assume that: 
- the diffusion coefficients Q and DA are approximately equal : Q = DA = 
- the diffusion is semi-infinite and linear. 
Under these conditions 

(5.13a) 
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r(g2 + 1)”’ + g l  i l l 2  - “(82 r + 1)’12 

(5.13b) -112 1 +- K A  (2DW a) 
K A + ~  (g2  + 1 y t 2  

The mass transfer impedance is composed of two parts in series: the first part is of the Warburg type, 
the second is characteristic for the presence of the chemical reaction. Sometimes the latter is named 

er impedance &, I 

In eqn (5.13) the influence of the chemical reaction becomes (more) noticeable at lower frequencies. 
If K A  is small, the complex-plane plot is difficult to distinguish from the one pertaining to bounded 
diffusion. Some examples are shown in Fig.5.4. 

Zm t‘ 

Fig. 5.4 Compiex-plane representation in the case of semi-infinite linear diffusion coupled 
to a homogeneous reaction. The numbers indicate values of KA 

5.4 Limitations 
Especially the validity of models describing mass transfer rely on the validity of the assumption that 
the electrode surface is ideally homogeneous, and that edge effects, inevitably present in experimental 
situations, are negligible. Generally, the inhomogeneity will have a characteristic scale of length, 
which should be compared with the characteristic length (D/w)1/2 of the diffusional mass transfer 
process, andor (Dl/og)ln of the coupled homogeneous reaction. 
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When the condition, 4 = DA, mentioned in Section 5.3 is not fulfilled, the expressions given there 
for h(s) and h(o) are not valid. Serious discrepancies should be expected if DI and D A  differ 
considerably. No closed form solution for such a case is available. 

6 THE FARADAIC IMPEDANCE 

The formalisms in Sections 4 and 5 are now combined in order to make explicit the mass transfer 
impedance coupled to the charge transfer process. Careful structuring of the matter is required, 
because a variety of notations is found in the literature. 

6.1 Principles 
The serial connection of R,t and &t in Fig. 4.1 is named 

(&la) 

If the rate of a reduction reaction is denoted by w the faradaic current density will be j F  = -nFw. 
From the Subsections 4.1 and 5.1 the general formulation for ZF is deduced: 

The expressions forfr(s) in Subsections 5.2 and 5.3 can be written as 

f I (s) 

(6.lb) 

thus expressing deviation from "Warburg behaviour" by means of the dimensionless functionh'(s), 
which is easily derived from the formulae in Sections 5.2 and 5.3. Further it is convenient to define 
the - 1 1  

so that 
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ZF(S) = R,, [I i- A 1 S - l i 2  f1'(S)] (6.4) 

The mass transfer impedance of any type for a species I involved in the electrode reaction is coupled 
with the charge transfer resistance through the parameter ;11 , which is determined by the nature of the 
rate equation. 

Such a general approach is seldom encountered in the literature, except for the much more general 
approach in [ref. 31. Rather the specific cases, discussed below, are treated, mostly restricted to the 
reactiontypeO+ne-ZR ,i .e.-vo= m=1. 

6.2 Expressions for the coupling parameters, b and & 
The different types of rate equations considered in Subsection 4.3 will now be used to derive b and 

A, * 

(iii) Non-linear. but explicif : 

&, = c0-l kf {o (Zo)' (c?,)~' - 0' (Cg)'' (FR)r  eq"} (6.7a) 

where Fo and f, are the mean surface concentrations. 

(iv) Anv rate eauat' ion. pnder N m t ~  'an d.c. conditim 
 his is a very important case because, for c0 = 2, eq, it can be proven that 

irrespective of the type of rate equation. Consequently, 
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The faradaic impedance in this case is 

(6.9) 

(6.10) 

i.e. its mass transfer part is independent of the kinetics of charge transfer. 'Zmt is given by 

(6.11) 

6.3 The Warburg impedance; Randles -Ershler behaviour 
In the case of semi-infinite linear diffusion of both the redox components, fo'(s) =fk'(s)  = 1. The 
mass transfer impedance Z,,,t (iw) in this case is called 

Containing the 

Warbure ~ar- O 

O = Rct (b + AR) 2-1'2 = Rct I p' 

(6.12) 

(6.13) 

In view of impedance or admittance analysis a dimensionless parameter may be introduced, named 

leading to the notations 
ZF = z; + iZF" = ow-112 (p+ 1 -  i) 

p + I  + i  @112 
Y F  = Y; + iYF" = - 

O (p +1)2 +1 

(6.14) 

(6.15a) 

(6.15b) 



1860 COMMISSION ON ELECTROCHEMISTRY 

-zF /ZF" = Y F  I Y F '  = cot 4 = p +1 (6.1%) 
If experimental data are in accordance with these equations the faradaic process is said to obey the 
Randles - Ershler equivalent circuit, see Fig. 1.3b. In Fig. 6.1 the typical frequency dependence of 
the faradaic impedance and admittance components is shown. 

Fig. 6.1 Frequency dependence, in the case of Randles - Ershler behaviour, of 
a) 
b) 

Z; and ZF" (components of the faradaic impedance), 
Y F' and Y F" (components of the faradaic admittance). 

6.4 Alternative and related notations 
The principles outlined above are typically those of the impedance approach. Detailed derivations of 
the same and similar cases are known from the a.c. polarographic approach. There the a.c. faradaic 
current, lux =AAjF, responding a perturbation Em sin UX, is generally expressed by [refs. 4, 121 

sin (cot + 29)  2 
(6.16) 

with 
cot I9 = vm 

Ire" is the current amplitude corresponding to the case of "d.c. and a.c. reversible behaviour", i.e. 
control only by semi-infinite linear diffusion; F(tm) is a factor introducing deviation from this 
behaviour in the d.c. sense (see Subsection 4.4), and V and U account for such deviation in the a.c. 

Part. 
The following general identities can be established: 

(6.17a) 

(6.17b) 
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U a ~ l l 2  = ZF" 6 .17~)  
These equations are useful to transform the methodologies developed for a.c. polarograms into 
expressions for the faradaic impedance. It should be emphasized, however, that the function F( rm) 
may become extremely complex when there is d.c. control additionally by processes other than 
diffusion, e.g. a coupled chemical reaction. This holds the more so in the case of the dropping 
mercury electrode [refs. 4,6]. 

6.5 Analysis of impedance data 
The computation scheme to evaluate ZF andor YF from the total cell impedance is as follows: 

If p priou, Randles-Ershler behaviour can be presumed, it is also customary to fit Yel to the three 
parameters a, Rct and Cd. It is noted that Yel' depends only on a and Rct. Then from the potential 
dependence of a and Rct information can be deduced concerning the form of the rate equation and the 
reduction rate constant kf (E) .  If the rate equation is of the linear type, the irreversibility parameter 
p' = Rct la  equals 

(6.18) 

independent of the bulk concentrations co* and a* and of the mode of d.c. mass transfer. A non- 
linear rate equation can lead to a concentration-dependent p' value. 

Mass transfer complicated by a coupled chemical reaction in principle leads to a frequency 
dependence different from "Randles-Ershler behaviour". Its extent, however, depends on the 
magnitude of the parameter g (see Subsection 5.3). Both for g>>l and g<<l "pseudo-Randles- 
Ershler behaviour" will prevail. However, the presence of the chemical reaction will show up in the 
potential dependence of "6' and "Rct", i.e. the "pseudo Randles-Ershler parameters". 

6.6 Limitations 
The description of ZF(S) in terms of Rct, A1 andfI'(s) is general for electrode reactions ~QI 

ated b: 
- reactant adsorption (see Section 8) 
- stepwise mechanisms with stable intermediates (see Section 9). 
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As stated before (Subsections 4.3.4 and 4.4.3) it should be permitted to consider the electrode 
surface as ideally homogeneous (see Section lo). 

In order that the formalisms be applicable to experimental data, the latter have to be obtained at small 
amplitude perturbations, such that the first order terms in the Taylor expansion of the rate equation, 
j~ =f(E ,  co, CR), are dominating. 
It is important to note that this also depends on the kind of technique employed. With a sinusoydal 
perturbation, e.g. AE = Em sin W, the Taylor expansion leads to terms like: 
1st-order : sin (W + 81) 
2nd-order : sin (2w + 4) and a rectification term 
3rd-order : 

With modem devices, the response detector is tuned to the fundamental frequency, 0, and 
consequently only a possible 3rd-order contribution may contaminate the first-order response. This is 
an important advantage of a.c. measurements in comparison with aperiodic techniques, e.g. pulse 
techniques. 

sin ( 3 ~  + 193) and sin (ot + 8;) 

The exact limit for Em can, in principle, be calculated by demanding that the total contribution of 3rd- 
order terms be negligible with respect to the total value of Ist-order terms. Obviously this will be d.c. 
potential dependent. In the extreme case of only charge transfer control, a relatively simple, general 
condition can be derived 

(6.19) 

7 THE ADSORPTION IMPEDANCE 

This Section concerns the case where, in addition to a base electrolyte, a species A is present that 
adsorbs at the interface under kinetic and/or mass transfer control. The double-layer charging process 
(Section 3 )  is reconsidered taking account of this complication. 

7.1 Principles 
The net rate of adsorption, Va = drA ldt, is a function of the potential, E, the surface concentration, 
CA, and the surface excess, r A .  A small excursion from the mean value, Ava , is written as 
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In the Laplace space, ACA(S) and Ava (s) are related by eqn (5.4), while 

The excess charge density, ahl, on the metal side of the interface depends on both the potential, E, 
and the surface excess, rA: 

~o~ = (aoM iaE) h~ + (aoM iar,) E AhTA (7.2) 
r A  

Consequently the charging current, Ajc = d(A&)/dt, is composed of two contributions, and the 
corresponding (part of) the interfacial admittance has two parallel branches. One of these is purely 
capacitive and is called the 

high f r equwpac i t ance  CHF 

cHF = (a# /aE) 
r A  

The second branch is formed by the 

adsorption impedance Za = Yi-* 

which is a series connection of three elements: 

the adsorption res istance Ra 

R, = ( a o M  / a r A r l  (ava 1aq-l  

the adsorption capacitance Ca 

c, = - R ~ - I  (ava /arA)-l  

(7.3) 

(7.7) 

The total double-layer charging process is functionally represented by the equivalent circuit of Za(s) 
parallel connected to Cm. 
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Lg& 
Fig.7.1 Equivalent circuit obeyed by the adsorption impedance 

In the literature, almost exclusively semi-infinite linear diffusion is supposed to be the only mass 
transfer process, i.e. fA(s)  = ( D A s ) - ~ / ~ .  Thereby, &La becomes a Warburg element, determined by 
the 

fadsorption) W a r b m  a a  

(7.8) 

7.2 More explicit expressions for  the adsorption impedance 
If it is wanted to formulate the concentration andor potential dependence of Ra, a,, Ca and CHF, an 
explicit rate equation for Va=f(E, CA, rA), based on a mechanistic model, is needed. Such an 
approach is rather uncommon. Instead, it is usually implicitly assumed that the a.c. perturbation is 
superimposed on the equilibrium situation, i.e. the mean adsorption rate, Va, equals zero, or is at least 
only diffusion-controlled. The mean values of r A ,  CA and E are then related by an adsorption 
isotherm, formulated as 

In this case two simplifying relationships between the partial derivatives in the Taylor expansion of va 

hold 

It follows that 

ca = (aaM ~ar , )~ (arA i a q C A  

a, C, = (2D)-'l2 (a rAiacA) ,  = zD 112 

(7.9) 

(7.9a) 

(7.9b) 

(7.9c) 
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The quantities TD and TH are the relaxation times connected to the diffusion controlled and the 
activation-controlled adsorption process. 
The expression for Ca is important because of its thermodynamic meaning. If one defines the 

low freauencv capacity Cw 

CLF=d$VI l dE  (7.10) 

at constant temperature, pressure and solution composition (see also Subsection 3), it follows that 

In not too complex cases the isotherm can be formulated as r A  =~(PAcA) ,  i.e. the potential 
dependence is incorporated in the adsorption coefficient PA(E). Then, following the thermodynamic 
arguments, further elimination of partial derivatives leads to 

(7.12a) 

(7.12b) 

where Cd is the double-layer capacitance in the absence of the adsorbing species. 

7.3 Other representations and notations 
In the earlier literature on adsorption kinetics, a parallel combination of a capacitance, C,, and a 
resistance, R,, was adopted as the equivalent circuit for the interfacial admittance. As both Cp and 
R,, then, depend on the frequency, such a representation is not functional, and the equivalent circuit 
in Fig.7.1 is to be preferred. 

Clearly, this circuit reduces to the capacity CHF for o -+ 00 and to the capacity CLF for w 0 .  
Alternative, but less functional, notations are 

insteadof Cm : C, 
i n s t e a d o f C ~ ~  : Co 
insteadof Ca : AC 

The notation of the complex adsorption impedance, Za(iW) = Z,' + i Za", is preferably 

(7.13a) 
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or making use of the two time constants and Z D  (see Subsection 7.2): 

(7.13b) 

7.4 Analysis of impedance data 
Raw data of the complex impedance are transformed by 

In principle, Yel(iO) has to be fitted to four unknown parameters, CHF, Ca, and Ra. This can be 
done graphically, by extrapolation procedures, or numerically. A complex plane plot of Yel'lO vs 
Yel"l0 is useful for a preliminary estimation, as demonstrated in Fig. 7.2. 

CH F CL F 

Fig.7.2 Graphical representation of the adsorption admittance in the complex Y/w -plane, for : 
(1) pure activation control, (2) pure diffusion control, (3) control by both activation and 
diffusion 

7.5 Limitations 
Most of the conditions for the several expressions to be valid, are mentioned already in the preceding 
Subsections. More generally the theory is restricted to so-called physical adsorption up to a 
monolayer, not complicated by e.g. phase transitions upon changing potential or concentration. 

The adsorption capacitance Ca can be strongly potential-dependent, especially in the region of the so- 
called adsorptioddesorption peaks. This demands a particularly low perturbation amplitude in order 
to avoid contamination of the response by higher-order contributions. 
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8 ADSORPTION OF ELECTROACTIVE SPECIES 

Rather extensive treatments are known of cases in which the reactants andor products of an electrode 
reaction are substantially adsorbed at the electrode-solution interface. The most important 
consequence is that the double-layer charging process and the faradaic process no longer occur 
independently. One says that the two are e. The basic aspects of this concept are outlined 
below. For simplicity, simple stoichiometry for the electrode reaction, 0 + ne 2 R, is assumed. 

8.1 Principles 
Most generally, six processes with finite rates are involved: 
- faradaic charge transfer : 
- double-layer charging : Jc =flE, r0,r~) 
- adsorption of 0 

- mass transfer of 0 
- mass transfer of R : JR,o=vF-Va,R 

v~ = -JF I nF =JIE,co,cR) 

v%o = d r o  I dt =flE,cO,rO,rR) 
- adsorption of R Va,R = drR I dt =flE,CR,rR,rO) 

: J 0 , O  = -vF - V&O 

Remark the choice of the "independent variables" in the first four lines is to some extent arbitrary (or 
prejudiced). If, for example, there were reasons to assume that the charge transfer proceeds 
exclusively via the adsorbed states of 0 and R, a rate equation -JF I nF =JIE,~o,TR) would be more 
obvious. Most strictly, one may define -JF I nF =~~E,co,cR,~o,~R). This has no consequences for 
the frequency dependence of the interfacial impedance per se, but only for the meaning of its 
characteristic parameters. 

A rigorous treatment, based on the six equations above, has been published in ref. 18. However, the 
complexity of the problem demands for simpler treatments. 

First it is usually assumed that the adsorption rates are purely controlled by mass transfer, or even by 
just semi-infinite linear diffusion. As a consequence, the rate equations for Va,o and Va,R are replaced 
by isotherms, i.e. 

ro =AE,coJR) and r~ =AE,CR,~O), 
expressing that the surface excess of 0 and R depend on the potential, and the surface concentrations 
of both 0 and R. The interfacial admittance representing this case is specified in Subsection 8.2. 

A substantial further simplification is achieved in the so-called a.c. reversible case, where also the 
faradaic current is purely controlled by semi-infinite linear diffusion. The rate equation for T, then, 
is to be replaced by the Nernst equation relating E, co and a: 
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It is important to realize that this reduces the number of independent variables: in the set E, co, one 
varable is fixed by choosing the other two. It appeared profitable to define all processes in terms of 
the variables E and w= Do~/%o + &~RQ. This case is further outlined in Section 8.3. 

8.2 The ax.  non-reversible case 
The entirely elaborated expression for the electrode admittance becomes very lengthy and complex. 
A more transparent representation may be as follows 

Yc = S K E  

The meaning of the symbols is 

YI = (2)E, cJ 

(8.la) 

(8.lb) 

(8 .1~)  
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N.B. The symbols q, 31 and 81 are used here only as a short-hand notation. They will not be listed in 
Appendix B . 

Thus far, fitting of experimental data to eqn(8.1) has never been attempted. Eqn 8.la gives a formal 
description of the faradaic process, complicated by the fact that the adsorption process consumes part 
of the mass transfer fluxes. Eqns (8.lb) and (8 .1~)  clearly show the coupling of the charging current 
and the faradaic current. 

8.3 The ax .  reversible case 
Because this case has been found to be applicable to quite a number of systems, it is treated here in 
more detail. In the Laplace domain, the set of equations to be solved is 

- 1 -  1 -  
( n F l R T )  M ( s )  =- Ac0(s) - - AcR(s) 

CO CR 

s 112 Doll2 = - ( n o - ’  -s ATR(s) 

where r= ro + TR, and co, 

A tedious derivation is needed to arrive at the most transparent solution, in which the electrode 
admittance is (or can be) expressed in the following way: 

are the mean surface concentrations, y = Do112 co + &1/2 a. 

Ye] (s)  = Z,(s)-l + z,(s)-’ + s CHF (8.2) 
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The three elements have a striking analogy with the elements denoted similarly in Sections 5 , 6  and 7. 
They are defined as follows: 

(i) the Warbure imped ance Zw 

zw = 0 (s/2)-112 
u = (RTIn2p) (e<+ 2 + e-5) yr-1 2-112 

z, (ii) the &omtion 1 apedance . .  

Za = 0, (sL)-l" + (Ca s1-l 

i.e. a serial connection of 

and the adsorp tion ca- Ca 

Following similar arguments as in Subsection 7.2, C, and Cm add up to the 

The total interfacial impedance can be represented by a functional equivalent circuit (Fig.8.la) 

& F + a  

(8.7) 

Fig. 8.1 Equivalent circuits in the case of reversible charge transfer and reactant adsorption. 
(a) general, (b) low-frequency limit, (c) high-frequency limit 
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The complex interfacial admittance is usually notated as 

1871 

(8.9) 

8.4 More explicit expressions based on thermodynamic relations 
The three elements Cw, Ca and Oa (or Cw, CLF and u') appear to depend essentially on four partial 

usually the adsorption isotherms of 0 and R are formulated as ro =ji&co) and r~ = A h  CR) with 
the potential dependence incorporated in Po and PR. This enables (art and the two partial 
derivatives of fi + nFro to be eliminated. The resulting expressions are 

derivatives: (a(& + nFTo) I aE)r,  (a(oM+nFro)iaE)yl, (art aE), and (art ayh. However, 

with 

aI = (RT1nF)dlnPI l d E  

a; = (RT I nF) d2 In I dE2 
c d  is the double-layer capacitance in the absence of the species 0 and R, and y is the mean value of 
y. The more simple cases of adsorption of QI& 0 and R are obtained by inserting pR = 0 or p0 = 0, 
respectively. 

8.5 Analysis of impedance data 
The raw data of the complex impedance are transformed by 
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In the a.c. reversible case the presence of reactant or product adsorption is observed from the 
characteristic frequency dependence of the functions Y , I ' u T ~ ' ~  and (Yell' - Yel')ur*. A fit to the four 
parameters a, a,, Ca and CHF, (or 0, u', CLF - CHF and CHF) is not always successful, because in 
limiting cases either aa(~/2)-1'2 or (Ca s)-' may be negligible in Za. The correspondingly reduced 
equivalent circuits (see Fig. 8.1) depend only on two parameters. 

In order to obtain information on the adsorptive properties of 0 and/or R, it is very important to 
study the admittance elements as a function of the d.c. potential. 

8.6 Validity of the concepts 
Most of the conditions are already mentioned in the previous Subsections, and furthermore the same 
restrictions as mentioned in Subsection 7.5 apply. It should be noted that the prevalence of a.c. 
reversibility, presumed in Subsections 8.3-8.5 may be difficult to be proven, since a slight effect of 
charge transfer control will be obscured by the effects of reactant adsorption, especially on the 
frequency dependence of Ye]. 

9 EXTENSIONS TO ELECTRODE REACTIONS INVOLVING A STABLE 
INTERMEDIATE 

At present, impedance measurements are also applied to many practical systems, where the electrode 
process may be much more involved than is presumed in the Sections before. It is not feasible and 
not useful to treat every possible case in this document. Instead, in this Section a rather general 
survey will be made of extensions to the previous concepts connected with the presumption that the 
electrode reaction is of the type 0 + nI e- 2 X ,  X + nn e- 2 R, where 0 is the reactant, R the 
product, and X a relatively stable intermediate, which means that possible mass transfer and/or 
adsorption of X has to be accounted for. Emphasis will be laid on the question whether the 
Occurrence of a stable intermediate can be inferred from the frequency dependence and/or the potential 
dependence of the interfacial impedance or admittance. Further, it will be attempted to unify the 
symbols to be used in such a way that similarities in the several models become as clear as possible. 

Naturally, all the cases to be treated below will show limiting behaviour in two directions: the 
intermediate may be completely stable, so that the system can be treated as if the two reactions 
proceed independently in successive potential ranges; or the intermediate may be relatively unstable, 
such that its mass transfer or adsorption is negligible, and the electrode reaction is, in fact, 0 + ne- 
2 R, with n = nI + nII. The degeneration of the impedance expressions to these limiting cases will 
nor be considered explicitly, as they are easily inferred. 
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9.1 Principles 
In general, the relevant mathematics involve application of the customary procedures, i.e. 1 st-order 
Taylor expansion and Laplace transformation, to the equations describing the following phenomena: 

or, in the a.c. reversible case: 

(iii) mass transfer: 

(iv) double-layer charging: 

(9. la) 
(9.lb) 

(9.2~1) 

(9.2b) 

(9.3) 

(9.4a) 

(9.4b) 

( 9 . k )  

For the adsorption, the surface excesses are assumed to be in equilibrium with the surface 
concentrations. For the sake of simplicity only semi-infinite linear diffusion is considered. 
Restructuring the formulae for other modes of mass transfer can be pursued with not too great 
difficulties (see also Section 5) .  
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It is reasonable to assume that the two faradaic currents pass the interface parallel to each other and 
parallel to the charging current. The electrode admittance will be built up in that way, considering 
several simplified cases separately. 

9.2 Control by difSusion of 0, X and R 
In this case charge transfer is fast, so that the Nernstian relations under (i) in 9.1 hold, and reactant 
adsorption is absent, so that all surface excesses equal zero, and the charging process is independent 
of the faradaic process. The two faradaic currents are each determined by a Warburg admittance: 

(9.6a) 

with 

(9.7a) 

(9.7b) 

in which c 0 , q  and are the mean interfacial concentrations, and n = nI + nu. 

Clearly, the two admittances are coupled, because they both contain the four Q parameters. The total 
interfacial impedance corresponds to the equivalent circuit of a double-layer capacitance parallel to a 
Warburg impedance, depicted in Fig. 9.1. 

Fig.9.1. Equivalent circuit in the diffusion controlled case 
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The presence of a two-step mechanism with a stable intermediate can, therefore, not be inferred from 
the frequency dependence. However, the Warburg coefficient, a, is dependent on the mean potential 
in a particular manner: 

(9.8) 

with 

w* = + D ~ ~ ~ ~ c ~ *  + DR’”cR* 

112 rp esI = ( D o / D x )  e I 

9.3 Control by charge transfer and dirision of 0, X and R 
If in addition to diffusion charge transfer is also rate-determining, the two rate equations under (i) are 
involved. Again the charging process is independent of the faradaic process, and the latter is 
determined by the parallel admittances YF,I and Y F , ~ :  

(9.9a) 

(9.9b) 
with 

1 G F ,  I - -  
%,I - (do , cx 

- -  1 

RctJ ’ ‘R 
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The explicit expressions for these partial derivatives depend on the form of the two rate equations, 
i.e. on the mechanism of the two charge transfer processes [see Subsections 4.3 and 6.21. 

The total interfacial admittance is characterized by five parameters, preferably written in the form of: 

(9.10) 

with 

D = W x , n  + WR + ~ X , I ~ R  (9.10c) 

No meaningful equivalent circuit can be assigned to this expression. By inserting s = i o  it can be 
transformed to the complex interfacial admittance or impedance. Theoretically, the frequency 
dependence is different from "Randles-Ershler behaviour". In practical situations, however, the 
distinction is hard to make, unless data are available in a very large frequency range. Therefore, also 
here the presence of the stable intermediate has to be inferred from the potential dependence of the 
parameters. 

9.4 Control by charge transfer, diDsion of 0 and R, and adsorption of the intermediate X 
This case is realistic if the intermediate is not or sparingly soluble in the solution, or for some other 
reason occurs as an adsorbate. The flux J x , ~ ,  therefore, is equal to zero, i.e. ( i~ ,n  / nnF) - (~F,I / nIF) 
= drx/dt. 

In theories dealing with cases of this type it is often neglected that the adsorbed intermediate may 
affect the double-layer charging process, i.e. one keeps putting & =A@ instead of =AE,Tx). 
This simplification is not necessary, because the correct expression for the charging current density, 
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is easy to combine with the derivation of the faradaic admittance. One obtains for the interfacial 
admittance: 

Xx = +(aoM ja r ,  ) E  

and the other parameters have the same meaning as in Section 9.3. Note that, strictly, YFJ and Y F , ~  
are not purely ”faradaic” admittances because of the incorporation of the parameter X, . 

Scrupulous reorganization of the expressions above shows that the total admittance is characterized 
by seven parameters in the expression 

with 

(9.12a) 

(9.12b) 
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c1 = A 0  + a, (9.12c) 

D = i b ~ n  + Y I ~ R  (9.12e) 

Needless to say that there is no meaningful equivalent circuit for this expression. The presence of the 
intermediate will be reflected by the potential dependence of all the parameters involved. Possibly in 
this case the frequency dependence will be characteristic as well. 

The formulations given here are exact and also quite general, leaving the substitution of explicit 
expressions for the parameters open to individual cases. It is not even required that nI and nII are 
integer numbers, which means that the expressions also apply to a mechanism involving so-called 
partial charge transfer [ref. 61. 

9.5 Control by difision of 0, X and R, and reactant adsorption of 0, X and R 
As in Section 9.2, charge transfer is assumed to be non-rate controlling, but the diffusional fluxes 
serve both the faradaic charge transfer and the accumulation or depletion of adsorbed 0, X and R. 
Not only are the principles of the derivation the same as in Subsection 8.3, but also the resulting 
interfacial admittance is of the same form as in the simple one-step electrode reaction: 

(9.13) 

However, the meaning of the parameters is more intricate. The Warburg parameter IS is given by the 
expression in Subsection 9.2. The adsorption Warburg parameter IS, and the adsorption capacity C, 
are related by 

oaJz = ca-l (ariav)E (9.14) 

and finally Ca is defined by 

Ca = CLF - CHF (9.15) 
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w = D ~ ~ / * c ~  + D ~ ~ ~ ~ c ~  + D R ~ ~ ~ c ~  
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(9.17) 

(9.18) 

(9.18a) 

More explicit expressions based on thermodynamic relationships similar to those in Subsection 8.4 
can be derived also for the present case. This will not be pursued here. 

10 NON-TRIVIAL CONSEQUENCES OF SURFACE INHOMOGENEITY 

A severe condition for the impedance expressions in Sections 2 to 9 to be valid is that the surface of 
the working electrode be smooth and homogeneous. The ideal electrode, therefore, is a liquid one, 
i.e. at room temperature mercury or a liquid amalgam, although even then edge or screening effects 
will cause deviations from ideal behaviour. Sometimes solid electrodes can be prepared, purified and 
polished to a high level of smoothness, but nevertheless they will remain irregular, at least on a 
microscopic or atomic scale. On the other hand, electrode surfaces sometimes are roughened by 
purpose, a special case being the porous electrode. It is becoming recognized, at present, that surface 
non-homogeneity and surface roughness give rise to a remarkably systematic change in the frequency 
dependence of the electrode impedance or admittance. Theoretical and experimental investigations 
during the last decade [ref. 191 have shown that this can be understood and described using the 
theory of fractals [ref. 201. Although probably this matter is not yet fully settled, we treat in this 
Section the main points of interest in relation to the foregoing Sections. 

10.1 Principles 

i) An electrode surface can be irregular at least in two different ways. Either the surface is 
geometrically rough (e.g. scratches, pores, etc.), or the surface is smooth, but its properties 
(e.g. double-layer capacitance, rate of charge transfer) are non-uniformly distributed. 

(ii) The basic consequence of an irregular electrode surface is a non-homogeneous current 
distribution near to this surface, and thus a non-uniform potential drop in the adjoining 
electrolyte solution. Therefore, its description requires coupling of the interfacial processes with 
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the conduction of electricity in the .solution up to a distance where the current distribution is 
(virtually) homogeneous. 

(iii) Mass transfer by diffusion to an irregular surface will also be non-uniform, if the diffusion 
length, (rD)*'* is comparable to the typical scale of the irregularity. 

(iv) When, as expected, the irregularities are random, only numerical simulations are suitable to 
predict current-potential characteristics in individual cases. Generalizing descriptions, however, 
are possible by assuming fractal models. This means that the morphology of the electrode 
surface is supposed to be preserved on every scale of observation, a property usually called 
"self-similarity". Several types of such fractals can be distinguished [ref. 201 and for each type 
the surface will have a certain fractal dimension, Df,  which is generally non-integer. 

The frequency dependence of the electrode admittance is closely connected to this 'fractal dimension', 
as will be briefly reviewed in the Subsections to follow. 

10.2 Double -layer charging 
Since long it was experimentally established that the admittance Y c ,  representing double-layer 
charging depends on the frequency according to 

This phenomenon was observed so widely that it became known as the 'Constant Phase Element' 
(CPE), which refers to the fact that the complex-plane plot of Y c  and & = Yc-' is a straight line, 
rotated by an angle @ = (1~12) (1-af)  [see Fig. 10.11 Note that af = 1 pertains to the normal 
capacitive behaviour. 

-Z' 
4 

yel' 
f 

+ Z' 
Fig. 10.1. Complex plane diagrams of the CPE 
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By use of the fractal theory it is derived that the electrode admittance of the ideal polarizable electrode 
is of the form 

Yc (a) K'*f(iaCd)af (10.2) 

where K is the specific conductivity of the electrolyte solution. For Cd the value of the differential 
double-layer capacitance should be introduced the electrode would have if its surface were smooth 
and homogeneous. Three remarks are connected to this expression: 

(i) Yc is emphatically said to be proportional to the right-hand side of eqn (10.2). The fractal 
theory is not able to specify the proportionality factor, which may depend on geometrical or 
morphological conditions. 

(i) The empirical 'CPE coefficient' Q appears to be proportional to K1-"fCdafand cannot be 
identified with the double-layer capacitance itself. 

(iii) The 'CPE exponent' af is related to the fractal dimension Df of the working electrode, but this 
relationship is not general, i.e. for a particular structure and a particular cell configuration a 
particular relation holds. It seems that some unification is possible by distinguishing two or 
more classes of geometrical symmetry [ref. 191. However, at the present state of the art the idea 
that the fractal dimension Df can be unambiguously deduced from the CPE exponent is a 
misconception. 

It should be remarked that the fractal theory provides one of the possible explanations of the CPE; 
alternative interpretations are possible for this phenomenon, e.g. based on dielectric relaxation 
processes in the case of semiconductor or oxide-covered metal electrodes. 
10.3 Charge transfer 
In eqn (10.2) the term between brackets is, in fact, the double-layer admittance of the ideal electrode. 
It has been shown that for any combination of purely interfacial processes this can be generalized to 
[ref. 211 

K'-af ( Yel,ideal ) Qf 

(10.3) 

Consequently, if the double-layer charging is short-circuited by activation-controlled charge transfer 
[see Section 41, one has immediately 

(10.4) 
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where RcC1 has its normal meaning, a j F /  aE. 

The remarks in Section 10.2 apply also here. In addition, it should be noted that eqn (10.4) after 
transformation of Yel to leads to a typical asymmetric arc shape in the complex impedance plane, 
(Fig. 10.2a) and m to the so-called 'depressed semi-circular arc', which seems to be observed in 
many experimental studies. 

Fig. 10.2a. Complex plane diagram 
of 2 according to eqn (10.4), af= 0.8 

Fig. 10.2b. Depressed semi-circular arc 

10.4 DifSusional mass transfer 
If the rate of some interfacial process is controlled by semi-infinite diffusion, it can be argued [ref. 51 
that the diffusion length, (Or)'" or (D / o)lI2 is directly the 'yardstick for the irregular surface. This 
leads to the expression for the impedance Zw,fr, replacing the normal Warburg impedance: 

where af is unambiguously related to the fractal dimension Df of the microscopically active surface 

by 

af = (112) (Df - 1) (10.6) 

Eqn (10.5) holds within a frequency range limited by the condition that (D/o)1/2 should neither be 
much smaller than the size of the smallest irregularity, nor be larger than the size of the largest 
irregularity of the surface. Beyond these limits, 'normal' Warburg behaviour will prevail [ref. 191. 

10.5 Porous electrodes 
Modelling of this special case of surface irregularity also requires idealization if simple mathematics 
are desired. In terms of the fractal approach, it can be shown that an electrode consisting of (parallel) 
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pores with uniform cross section obeys the eqns (10.1) - (10.5). discussed in the previous Sections, 
with af equal to 1/2 [refs. 19,211. This result is consistent with the exact treatment of this case given 
much earlier by de Levie [refs. 22, 231. The proportionality factor, missing in the fractal approach, 
turns out to be equal to unity. 

10.6 Edge and screening effects 
Emphasizing again that the expressions discussed in this chapter result from modelling the 
consequences of non-homogeneous current distribution at irregular surface, it should be recognized 
that at any kind of electrode the current distribution will be inhomogeneous near the edge(s) of the 
electrode surface and at places where the surface is screened by non-conducting material. Effects 
raised by this complication will be serious if the surface area is (relatively) small. 
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APPENDIX A: SYMBOLS USED FOR 

Name Symbol SI unit 

1/-1 
distance 

thichess 

radius 

area 

fractal dimension 

time 

angular frequency 

Laplace parameter 

time constant 

relaxation time 

pressure 

temperature 

gas constant 

chemical potential 

bulk concentration 

surface concentration 

mean surface concentration 

a.c. part of c 

surface excess 

a.c. part of r 
adsorption coefficient 

C *  

C 

- 
C 

Ac 

r 
A r  

P 

m 

m 

m 

m2 

1 

S 

5-1 

S-1 

S 

S 

N m-2 

K 

J K-1 mol-1 

J mol-1 

mol m-3 

mol m-3 

mol m-3 

mol m-3 

mol m-2 

mol m-2 

mol-1 m3 
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Name Symbol SI unit 

flux 

volume flow rate 

diffusion coefficient 

rate of homogeneous reaction 

rate constant 

equilibrium constant 

rate of heterogeneous reaction 

rate of adsorption 

rate of charge transfer 

reduction rate constant 

oxydation rate constant 

transfer coefficient 

stoichiometric number 

reaction order 

charge number of electrcde reaction 

charge number of ion 

Faraday constant 

quantity of electricity 

surface charge density 

electric current 

alternating current 

amplitude of alternating current 

electric current density 

alternating current density 

faradaic current density 

J, J o  
-. 
V 

D 

r 

k 

K 

V 

Va 

VF 

kf 

kb 

a 

V 

0, o', r, r' 

n 

2 

F 

mol m-2 s-1 

m3 s-1 

m2 s-1 

mol m-3 s-1 

s-1 or various 

various 

mol m-2 s-* 

mol m-2 s-1 

mol m-2 s-1 

m s-1 

m s-1 

1 

1 

1 

1 

1 

C mol-1 

C 

C m-2 

A 

A 

A 

A m-2 

A m-2 

A m-2 
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charging current density 

electric potential 

electrode potential 

mean electrode potential 

alternating potential 

amplitude of alternating potential 

standard potential 

reversible half-wave potential 

equilibrium potential 

conductivity 

resistivity 

electrical resistance 

capacitance 

permittivity of vacuum 

relative permittivity 

self-inductance 

impedance 

admittance 

phase shift, phase angle 

K 

P 

R 

C 

E O  

Er 

L 

Z = Z' + iZ" 

Y = Y + iY" 

6, @ 

A m-2 

V 

V 

V 

V 

V 

V 

V 

V 

S m-1 

R m  

a, or R m* 

F, or F m-2 

F m-1 

1 

H 

R, or R m2 

S ,  or S m-2 

1, rad 
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APPENDIX B: SYMBOLS USED FOR m A N C E  PARAMETERS 

Symbol SI unit Name Section 

F m-2 

F m-2 

F m-2 

F m-2 

F m-2 

s m-1 

1 

1 

A 

A 

A m-2 

A m-2 

A m-2 

S-1 

1 

m s-1 

m s-1 

m s-1 

1 

112 

S m-2 sa 

m2 

i-2 m2 

n m2 

adsorption capacitance 

differential double-layer capacitance 

geometric capacitance 

high frequency capacitance 

low frequency capacitance 

mass transfer function 

correction function for non- 

Nemstian d.c. behaviour 

(k A + k-A) I0 

a.c. faradaic current 

a.c. reversible current 

exchange current density 

cathodic partial c.d. 

anodic partial c.d. 

chemical rate constant 

equilibrium constant 

reduction rate constant 

oxydation rate constant 

standard rate constant 

irreversibility quotient 

211' / (b + AR) 
CPE parameter 

adsorption resistance 

charge transfer resistance 

R Ct at d.c. Nemstian behaviour 

7.1 7.2 8.3 9.5 

3.1 

2.5 3.5 

7.1 7.2 8.3 9.4 9.5 

7.2 8.3 9.5 

5.1 5.2 5.3 

4.4 4.6 

5.3 

6.4 

6.4 

4.3 

4.3 

4.3 

5.3 

5.3 

4.1 4.3 

4.1 4.3 

4.3 

6.3 

6.3 

10.2 

7.1 7.2 

4 8.2 9.3 

4.4 



Impedances of electrochemical systems 1889 

Symbol SI unit Name Section 

metal resistance 

solution resistance 

ohmic resistance 

adsorption parameter, eqn (8.9) 

correction factors for non-a.c. 

reversibility 

Y =  Z -1 admittance 

real component of Y 

imaginary component of Y 

modulus of Y 

operational admittance 

adsorption admittance = Z a -1 

electrode admittance 

double-layer admittance 

faradaic admittance 

2' + iZ", impedance 

real component of Z 

imaginary Component of Z 

modulus of Z 

operational impedance 

adsorption impedance 

double-layer impedance 

electrode impedance 

faradaic impedance 

Gerischer impedance 

2.1 

2.1 

2.1 

8.3 

6.4 

1.1 

1.1 

1.1 

1.1 

1.2 

7 

2.1 

1.5 3 10 

1.5 6 8 9 

1.1 

1.1 

1.1 

1.1 

1.2 

7 7.1 8.3 

1.5 10 

2.1 

6 8.2 9 10 

5.3 



1890 COMMISSION ON ELECTROCHEMISTRY 

Symbol SI unit Name Section 

mass transfer impedance 4.1 5 

(adsorption) mass transfer impedance 7.1 

Warburg element 

Warburg impedance 

Warburg impedance at fractal surface 

transfer coefficient 

(RT I (no dln p I I dE 

d a I  I dE 

CPE exponent 

adsorption coefficient 

surface excess 

diffusion layer thickness 

phase angle 

coupling parameter 

stoichiometric number 

resistivity 

surface charge density 

parameter of Z w, I 
C q = Rct C A1 2112 

adsorption Warburg parameter 

adsorption Warburg impedance 

4 6121 D I  

0a2Ca2 

5.2 

1.5 6.3 8.3 

10.4 

4.3 

8.4 

8.4 

10.2 

8.4 

7 8 9.4 9.5 

8.3 9.5 

5.2 

1.1 

6.1 6.2 8.2 9.3 

4.1 5.1 

2.1 

3.1 

5.2 9.2 

6.3 8.3 9.2 

7.1 7.2 8.3 

8.3 

5.2 

7.2 



Impedances of electrochemical systems 1891 

Symbol SI unit Name Section 

RaCa 

coupling parameter 

F - 1   OM / xXIE 
I: D I 112 c I 

mean part of w 
equilibrium value of y 

phase angle of faradaic impedance 

(m (RT) ( E  - EO) 
(nF 1 (RT) ( E  - EL2) 

7.2 

9.4 

9.4 

8.1 8.3 9.5 

8.4 

9.2 

6.3 

4.3 6.4 

4.4 6.4 6.5 




