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Abstract: Transmetallation of allylstannanes with heterosubstituents at the 4-, 5- and 6-
positions using tin(IV) halides generates allyltin trihalides which react with aldehydes
to give homoallylic alcohols with excellent 1,5-, 1,6- and 1,7-asymmetric induction,
Preliminary investigations indicate that imines prepared from butyl glyoxalate react
with the allyltin trichloride prepared from 4- and 5-benzyloxypent-2-enyl-
tributylstannanes with useful 1,5-asymmetric induction,

(E)-But-2-enyltributylstannane ] reacts with aldehydes on heating to give anti-1-substituted 2-methylbut-3-
enols 3 via concerted processes involving cyclic, chair-like, transition states 3 (1). 1-Alkoxybut-2-enyl-
stannanes 2 give 4-alkoxy-1,2-anti-3,4-cis-but-3-en-1-ols 4 showing that the 1-substituent in the stannane
prefers to adopt the axial position in the transition state 6 since reaction via transition state 7, in which the 1-
substituent is equatorial, would give rise to trans-alkenes, which are not observed (2). The (1R)- and (15)-1-
alkoxybut-2-enylstannanes 8 and 11 therefore react with the Si- and Re-faces of benzaldehyde to give the
(15,25)- and (1R,2R)-products 9 and 12, via transition states 10 and 13, with excellent stereoselectivity (3).
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In the presence of boron trifluoride diethyl etherate, both (E)- and (Z)-but-2-enylstannanes 14 react with
aldehydes at -78 oC to give predominantly syn-products 15 via the open-chain process 16 in which the rate
acceleration is due to co-ordination of the aldehyde by the Lewis acid (4). Other Lewis acids effect
transmetallation of allylstannanes to generate more reactive allylmetal species which then react with the
aldehyde. For example, treatment of 3-phenylprop-2-enylstannane 17 with butyltin trichloride generates (1-
phenylprop-2-enyl)butyltin dichloride 18 which can be trapped with aldehydes to give 1-substituted (Z)-4-
phenylbut-3-en-1-ols 19, via the cyclic transition state 20 in which the 1-phenyl substituent is axial. On
standing, ]18 rearranges to its 3-phenyl-isomer 2] which reacts with aldehydes to give anti-products 22 (5).
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The 4-benzyloxypen-2-enylstannane 23 was found to exhibit only low diastereofacial select1v1ty in reactions
with aldehydes at 150 ©C and in the presence of boron trifluoride diethyl etherate (6). However, treatment of
the stannane 23 with tin(IV) chloride followed after 5-10 min. by the addition of an aldehyde gave rise to the
formation of 1-substituted syn-5-benzyloxy-(3Z)-hex-3-en-1-ols 24 with excellent stereoselectivity (7).
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The selective formation of the 1,5-syn-isomer 24 is consistent with a stereoselective transmetallation of the
stannane 23 to generate the allyltin trichloride 26 in which the electron deficient tin is co-ordinated to the
benzyloxy substituent. This allyltin trichloride then reacts with the aldehyde via the cyclic, chair-like
transition state 27 in which the group @ to the tin is axial, ¢f. 6. This preference establishes the
stereochemistry at the newly formed chiral centre relative to the chiral centre derived from the stannane and
establishes the Z-geometry of the alkene (7). 1,5-syn-Products were also obtained with useful stereo-
selectivity from the 4-dibenzylamino and 4,5-disubstituted pent-2-enylstannanes 29 and 31 (8,9).

H Me H Cl Cl
SnCl ' H
23 _—4’ A_r 591{'2 /J\O.-Sn —» R O—SH‘CI —» R OH
Cl:§n-OBn = OBn
Cr ‘Cl OB
H
% " M
Z~_Me i SnBry, P i. SnCly, OH
u3zdn v —_— )\/—\,Me Bu3Sn [0) R — op
NBn; ii. RCHO OSEM ii. RCHO
29 3 Nem S 32 OSEM
syn:anti 297 ; 3 . (P = SiMe,;Bu")

The scope of remote stereochemical control using allylstannanes with heteroatom substituents was studied.
Treatment of 5-alkoxy- and 5-alkylthio-4-methylpent-2-enylstannanes 33, 34, and 37 with either tin(@V)
chloride or tin(IV) bromide generated an intermediate which reacted with aldehydes with useful anti-1,5-
stereoselectivity (10-12). This stereoselectivity was observed for 5-substituted stannanes with benzyloxy, p-
methoxybenzyloxy, methoxymethoxy, and 2-trimethylsilylethoxymethoxy substituents and similar, albeit
slightly reduced, stereoselectivity was observed for the corresponding 5-hydroxy- and 5-tert-butyl-
dimethylsilyloxystannanes (13). The geometry of the double-bond of the stannane, particularly in the case of
the 2,4-dimethylpent-2-enylstannane 34, was found to be unimportant. The stereoselectivity of these
reactions is consistent with the stereoselective formation of an allyltin trihalide, e.g. 39 which reacts with
aldehydes via the six-membered, cyclic, transition state 40 in which the group o to tin is axial and controls
the facial selectivity of the reaction with the aldehyde.
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In contrast, S-acyloxypent-2-enylstannanes 4] were found to give more of the anti-(E)-hex-3-en-1-ols 42 in
reactions with aldehydes promoted by either tin(IV) bromide or chloride although the stereoselectivity was
not high enough to be useful. Perhaps the allyltin trihalides 43 in which the carbonyl oxygen is co-ordinated
to the tin are involved. These may then react with aldehydes via transition states 44 in which the group o to
tin is equatorial (14).
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5-Hydroxy- and 5-methoxyhex-2-enyltributylstannanes 435 (R = H, Me) react with aldehydes after
transmetallation with tin(IV) bromide to give the syn-1,6-products 46 (R = H, Me) with useful 1,6-
asymmetric induction consistent with the participation of the allyltin tribromide 47 in which the vinyl and
methyl groups are cis disposed about the five-membered ring (15). Lower stereoselectivities were obtained
with bulkier groups on the oxygen and with tin(IV) chloride. 1,6-anti-Stereoselectivity was observed for the
5-methyl-6-hydroxyhex-2-enyistannane 48 and 1,7-syn-stereoselectivity for the 6-hydroxyhept-2-
enylstannane 31 (16,17). In both cases the stereoselectivity is consistent with transmetallation of the
allylstannane to generate an allyltin tribromide in which the electron deficient tin is co-ordinated by the
oxygen to form a six-membered ring with both the vinyl and methyl substituents equatorial. Subsequent
reaction with the aldehyde involves a chair-like transition state with the group o to tin axial.
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Preliminary investigations have been carried out into remote asymmetric induction in reactions between
imines and allylstannanes. Both boron trifluoride diethyl etherate and titanium(IV) chloride catalyse reactions
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between imines and allylstannanes (13), but for the remote asymmetric induction it was necessary to develop
conditions for reactions between allyltin trihalides and imines. Simple imines did not react with prop-2-
enyltin trichloride 335 at -78 ©C. However, the imine 54 prepared from butyl glyoxalate and (R)-1-
phenylethylamine reacted with the prop-2-enyltin trichloride to give the 2-(R)-pentencate 56 with excellent
stereoselectivity. This selectivity is the opposite from that observed using allyl-9BBN, and establishes the
intrinsic facial preference of the imine 34 in reactions with allyltin trichlorides (19).
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The intermediate generated by treatment of the (45)-4-benzyloxypent-2-enylstannane 23 with tin(ITV) chloride
reacted with both the (R)- and (S)-imines 34 and ent-34 with excellent stereoselectivity in favour of the 1,5-
anti-products 58 and 59 although the selectivity was slightly better when this anti-selectivity was matched
with the intrinsic selectivity of the imine. With the 5-benzyloxy-4-methylpent-2-enylstannane 33 (R1 = Bn;
R2 = H), this matching and mis-matching were more apparent and useful selectivity was only obtained when
the 1,5-syn-preference of the stannane was matched with the intrinsic bias of the imine (19).
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The selective formation of (F)-alkenes in reactions of the alkoxyallylstannanes 23 and 33 with imines
contrasts with the formation of (Z)-alkenes in reactions with aldehydes and may be indicative of open-chain
transition states, although both open-chain and cyclic processes can be devised which are consistent with
both the imine facial selectivity and the 1,5-stereoselectivity. Present work is concerned with the application
of this chemistry to the synthesis of complex natural products and the use of other allylmetal reagents (20).
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