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Abstract - Most of the equations proposed since 1940 to express the isothermal 
pressure dependence of rate and equilibrium constants in solution are critically 
reviewed. Purely empirical, mechanical compression and model-based approaches are 
identified for constructing analytical equations. The original equations are rewritten in 
the form -[RT / @-p3] In (Kp / Kp,> = cp(p), so that AVpo = cp(po) and AYm = cp(00). 

This analysis, highlighting similarities and differences, revealed that mathematically 
equivalent equations have been derived in the past by different authors using different 
approaches. Special attention is paid to equations predicting finite values for AVm. It 
is concluded that in general q(p) should contain at least three independent parameters 
related to volume changes arising respectively, from intramolecular rearrangements, 
activation or reaction solvating power, and the nature of the solvent. If one of these 
volume changes is inoperative (as the intramolecular term in some ionization 
equilibria), then the number of adjustable parameters may be reduced accordingly. 
Finally, it is shown that most of the equations can be represented by 1nK = a, + a l p  + 
u 2 B )  + a3 p a )  which comprises three distinct classes corresponding t o o )  = p2, 
j@) = l/(l+a,p) and&) = ln(l+a,p). 

INTRODUCTION 
The kinetic and equilibrium approaches to elucidate the mechanism of chemical reactions in solution involve 
the measurement of rate and equilibrium constants as functions of different chemical and physical variables. 
Temperature-dependence studies tell us something about the energetics of the process, whereas pressure- 
dependence studies reveal information on the volume profile of the process. Therefore, the volume change 
accompanying reactions and activated rate processes at constant temperature and pressure is an important 
quantity in solution chemistry. Reaction or activation volumes for ionization equilibria and for a variety of 
organic and inorganic reactions have been extensively tabulated (1-3). Volume changes are 
thermodynamically related to the isothermal pressure dependence of chemical constants. Because this 
relationship is generally nonlinear, analytical equations in pressure have been in use for a long time. 

Formalisms for equilibrium constants and for rate constants of single-step reactions are analogous. Thus, for 
the sake of simplicity, we denote by the common symbol K rate and equilibrium constants not referred to a 
standard pressure. We use the notation AV for the standard volume of reaction A ,Yo and the volume of 
activation A V ,  and the notation AKT for the standard isothermal compression of reaction A , K ;  and the 
isothermal compression of activation A*KT. In short, 

It is therefore a matter of convenience to express rate and equilibrium constants in pressure-independent 
units (4), a procedure implicitly assumed in the following arguments. 
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FORMS OF ANALYTICAL EQUATIONS 
More than a dozen analytical equations have been proposed over the years to express the isothermal 
pressure dependence of rate and equilibrium constants in solution. Many more could have been counted if 
the various forms for each pressure fbnction employed had been taken into account. We may describe these 
forms as itdeJnite, indefinite with reference and definite. Consider the following hypothetical equation: 

InK = 6 + alp + - a, + a, In (1+u4p) 
1 + U4P 

It exemplifies an inakflnite fbnction of the pressure. If the difference p - po  is used from the outset then we 
have the corresponding indejnite form with reference: 

The &finite form usually results from integrating a model equation for volume changes. In our example it 
reads: 

These forms are easily convertible from one to another, as partially exemplified by the transformation: 

This equivalence is clearly warranted in the case of zero pressure as reference. Otherwise, it should be 
checked. For instance, for the incomplete cubic equation proposed by Asano and le Noble (2), but 
apparently never tested, the indefinite and the indefinite with reference forms are not interchangeable. 

From a theoretical point of view, our preference is for the definite form because it leads to expressions of 
the type 

which has the following important advantages: 

The number of adjustable parameters is one less than in the corresponding indefinite forms. 
0 The logarithmic hnction is rendered dimensionless so that there is no need to speci@ units. 

The dependent variable has the proper dimensions of activation or reaction volumes so that least squares 
analysis is directly referred to these quantities. 
Application of L’Hospital’s rule for derivatives with indeterminate forms shows that A?$, = q(po) and 
AV- = ~(00). 

0 It provides a good scaling when applying a given equation to different experimental data. 

APPROACHES TO ANALYTICAL EQUATIONS 
Recently, Blandamer ( 5 )  characterized two approaches for establishing analytical equations as follows: 
0 Purely empirical equations based on the geometrical features of the measured dependence of constants 

on pressure, if the aim is to use reaction and activation volumes to get insights into the reaction and its 
mechanism. 

0 Model-bused equations, if “we speculate about the chemistry and hence formulate an equation for the 
dependence of constants on pressure”. 

To these we add a third approach: 
0 Mechanical compression, if species in solution are considered as solvated ions or as molecular liquids as 

far as their volume--pressure relations are concerned. 
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According to its graphical representation, most of the equations in this field can be classified as polynomial, 
hyperbolic and logarithmic equations in pressure. These three types are well represented in purely 
empirical equations. In addition, there is an instance of exponential equation in pressure. Model-based and 
mechanical compression approaches have led to logarithmic equations in pressure but with a single 
exception in each approach. It is therefore convenient to organize our guide of analytical equations 
according to their graphical representation. 

TABLE 1. A guide of reduced polynomial equations in pressure 

CaSe Simplification Cp@) f a  AVw Ref 

General, 
cubic 

a) Incomplete 
cubic 

b) Quadratic 

c) Constrained 
quadratic 

d) Linear 

None 

(E5)T = 0 

(F)T = 0, 

AV 
--h i s  a solvent property 
A% 

dK,, = 0 7  

3 f o o  (6) 

2 f w  (2)  

2 fw (7,8) 

1 f m  (9) 

(y)T = 0 

a Number of fitting parameters. 

A GUIDE OF REDUCED POLYNOMIAL, EQUATIONS M PRESSURE 
Polynomials are the prototype of purely empirical equations. The reduced cubic polynomial in pressure 
represents a general case encompassing four particular cases (Table 1). Except for the linear case, infrnite 
volume changes are predicted for infinite pressure, and extremes may occur in calculated rate and 
equilibrium constants within or near the experimental range of pressure. The third degree polynomial may 
also introduce a change of curvature from concave to convex in this range. This inflexion is at zero pressure 
for the incomplete cubic equation of Asano and le Noble (2). These difficulties are illustrated in Fig. 1-3. 

It is well known that the quadratic equation in pressure systematically underestimates volume changes at 
ambient pressure (12-14). This is also the case with the incomplete cubic polynomial because its curvature 
also increases with increasing pressure (Fig. 3), which is usually the opposite of that experimentally 
observed. Hence it cannot be the more flexible equation surmised by Asano and le Noble (2). Despite these 
limitations, the quadratic in pressure, first employed by Owen and Brinkley in 1941 (7), is certainly the most 
popular equation in this field. However, its application should be contined within a pressure range 
corresponding to a 10 per cent change in solvent density, as recommended by Eckert (1 5). 

A GUIDE OF EXPONENTIAL EQUATIONS IN PRESSURE 
An exponentialfunction of pressure was considered by Heydtmann and Stiegger (16). This purely empirical 
equation (Table 2) with only two adjustable parameters has not stood up favourably in the comparative 
study of Kelm and Palmer (12). We believe that this is because the high-order derivatives of this equation 
with respect to pressure are never zero, even in their limit of very high pressures. 
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TABLE 2. A guide of exponential equations in pressure 

Case Simplification cp(P) f a  AVoo Ref 

Single None 2 f o o  (16) 

a Number of fitting parameters. 

-5 1 I I I I I I I 1 
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Fig. 1 Plot of cp@) / cm3 mor’ vs @p0) I MPa for the reaction of tri-ri-propylamine with iodome- 
thane in acetone at 30 “C. The c w e  drawn is for the reduced cubic polynomial and has an extreme for 
p = 633 MPa. Data fiom Re€ (1 1). 

Fig. 2 Plot of In (Us-’) vs p/MPa for the reaction in Fig. 1. The c w e  drawn is for the cubic polyno- 
mial and has an inflexion for p = 422 MPa. 

0.0 

-2.0 

I 
0 200 400 600 800 

-4.0 I 
Fig. 3 
cubic polynomial of Asano and le Noble (2) and has an inflexion for p = 0. 

Plot of In (Ws”) vs plMPa for the reaction h Fig. 1. The curve drawn is for the incomplet 
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A GUIDE OF HYPERBOLIC EQUATIONS IN PRESSURE 
Hyperbolic firnctions of pressure have been introduced in purely empirical equations (Table 3). Heydtmann 
and Stiegger (16) were the first to propose this function and it was accepted much better than these authors' 
exponential equation. In fact, Baliga and Whalley (17) and El'yanov and Hamann (18), apparently unware 
of previous similar works, presented equivalent expressions. Nakahara (1 9) was able to confer theoretical 
meaning to this empirical equation by using an electrostatic solvation model together with the equation of 
DUM and Stokes (20) for the effect of pressure on the solvent dielectric constant. 

The attractiveness of the hyperbolic function appears to reside in predicting a finite volume change in the 
limit of very high pressures, which is zero with the Heydtmann and Stiegger two-parameter equation (Table 
3, case b). However, by introducing a third parameter, Asano and Okada (13) obtained a hyperbolic 
equation (Table 3, general case) leading to finite non-zero limiting volume changes. Nonetheless, this 
feature can also be incorporated in two-parameter hyperbolic equations by imposing a special parameter 
combination, as shown in Table 3, case a. Finally, analysis of Nakahara's version (Table 3, case c) reveals 
that for ionization equilibria the ratio AVpo / MTp0 is a solvent property in agreement with the empirical 
finding that led to the constrained quadratic of Lown et al. (9) (Table 1, case c). 

TABLE 3 .  A guide of hyperbolic equations in pressure 

Case Simplification cp(P) f" AV- Ref. 

General None 3 A V , + b / c  (13) 

b =  (1+CPO)?AV, *y* I-c (I-cpo) ] / [ ~ + c ( P - P . ) ]  2 AV,/[l-c(l-cpo)] this work 
1-c (1-cp,) a) 

b) b = -C AV, AV, 
1+c (P-Po) 

AV, b = -C AV, , 
1 + P  (P-Po) 

c) 
c = p (solv.) 

2 0  

1 0  

(16-18) 

~~ 

" Number of fitting parameters. 

A GUIDE OF LOGARITHMIC EQUATIONS IN PRESSURE 
The logarithmicfinction is used in the largest number of analytical equations. Under this heading we find 
equations developed by means of purely empirical, model-based and mechanical compression approaches. 
We now present the findamentals of these latter approaches. 

Mechanical compression approach 
The thermodynamic definition of standard volume of reaction is A,Vo = Ci vi 5'. Here vi is the 
stoichiometric coefficient of reactant or product i and for solutes 5' is the partial molar volume of the 
chemical species i at infinite dilution. Now, if a reliable empirical relationship is employed to describe the 
compression properties of species in solution, then an equation for the effect of pressure on equilibrium 
constants should be obtained upon integration. This is the basis of the mechanical compression approach. At 
this point two slightly different treatments were developed, one for ions in solution and the other for non- 
ionic solutes. 

Owen and Brinkley (7) pioneered the application of this approach to ionic equilibria. These authors used the 
Gibson equation (21) for the isothermal compression of salt solutions which in turn is an extension of the 
century-old Tait equation (22). Hence we see the first appearance of a logarithmicfunction of pressure in 
this field. It is also of interest to note that the Owen-Brinkley equation was rederived three decades later by 
researchers using model-based approaches (23-25). 

The other treatment originated in the idea presented by Benson and Berson (26) to consider non-ionic 
species in solution as having isothermal volume-pressure relations similar to ordinary liquids. These 
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authors chose the Tait equation to express the compressibility of the activated complex as well as of the 
reactants. Facing an excessive number of unknowns, Benson and Berson (26) resorted to a numerical 
approximation. As a consequence, their working equation is 1nK = a. + a, p + a2p1.523 and hence it is not 
truly a logarithmic equation in pressure. Nearly 15 years later, two research groups (27-29) improved on the 
Benson-Berson analysis to obtain a better equation. Less known is the fact that this equation is 
mathematically equivalent to a model-based equation arrived at a few years earlier by others (30,3 1). 

Model-based approach 
The origin of the model-based approach can be traced to the proposal by Evans and Polanyi (32) of 
dissecting activation volumes in solution into two contributions. The first arising from an essentially 
pressure-independent intramolecular or intrinsic volume change, A, V, and the second from pressure- 
dependent solvent-reorganization volume changes, A2 V. These concepts also apply to reaction volumes. 
Now, by modelling the intermolecular or solvation contribution, an analytical equation should follow upon 
integration with respect to pressure. Two not very different treatments have emerged from this approach, 
one focussing on the solvating-solvent density and the other on electrostatic solvation theories. 

The most useful molecular model for 4 V  was advanced independently in the 1960s by Kondo et al. (33) 
and by Hills and Viana (34,35). According to this model the intermolecular term is given by 

A2V=n(V, , -  V,k, 

where n represents the extra number of solvent molecules involved in an activation or reaction event, and 
V,, and V,, are the molar volumes of the solvent in its solvating (s) and pure (A) states. To progress 
additional assumptions are necessary. Thus the extra solvation number n along with A I V  are generally 
considered pressure-independent. However, different treatments were adopted for the change in solvent 
density with pressure. 

Hills and Viana (34,35) treated the solvating solvent as being in a glassy state and much less compressible 
than the bulk solvent. By describing the effect of pressure on V,, with the help of the Tait equation, Jones 
et ul. (30) for rate constants, and North (3 1)  for equilibrium constants, independently of each other and of 
Hills and Viana, obtained an analytical equation from which the extra solvation number can be estimated. 
Except for using the constant B of the Tait isotherm for the solvent as a solvent parameter this equation was 
obtained a few years later from the mechanical compression approach by Orszagh et al. (27), and by 
El’yanov and Gonikberg (28,29). 

Kondo et al. (33) approximated the solvent density change due to solvation with the quantity 
-Sp V,, K ~ , ,  where KT,A is the pure solvent isothermal compressibility and Sp is a constant that can be 
interpreted as the extra pressure required to bring the solvent to the density of its solvating state. Based on 
this treatment, Asano (24), resorting once more to the Tait isotherm for the solvent, derived an analytical 
equation incorporating Kondo and coworkers’ approximation, as recently shown by Viana et al. (14). 
However, only the product n. Sp can be estimated from this equation. It should be no surprise by now to 
note that the Asano equation (24,25) is mathematically identical to the much older equation developed by 
Owen and Brinkley (7) in terms of the mechanical compression approach. 

The latest development using the model-based approach is being introduced at this Conference by Reis and 
Segurado (36). Let us recall the approximate treatments applied to the intermolecular term in this quest for 
better analytical equations. Following Hills and Viana (34,35), only the bulk solvent would contribute 
significantly to volume changes with pressure. On the other hand, Kondo et al. (33), while recognizing that 
the compressibility of the solvating solvent should not be disregarded, made a simplification from the outset. 
In a more rigorous treatment, albeit at the cost of one extra adjustable parameter, Reis and Segurado (36) 
circumvented these limitations and obtained an equation where both bulk and solvating solvent densities are 
described by related Tait isotherms. Hence the pressure-independent quantities are reduced to the 
intramolecular volume change and the extra solvation number. 

To complete this overview of the approach based on models, it remains to consider treatments using the 
Born equation for the solvation energy. From its application, the intermolecular contribution to volume 
changes can be related to the pressure derivative of the solvent dielectric constant. This variation has been 
expressed by means of two equations. While employing the Dunn-Stokes relationship (20), Nakahara (19) 
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obtained the hyperbolic equation in pressure first proposed by Heydtmann and Stiegger (16). If the effect of 
pressure upon the solvent dielectric constant is described by the Owen-BrinkZey equation (37), which is 
formally analogous to the Tait equation, then the Owen-Brinkley equation for ionic equilibria (7) is 
obtained (23) as well as its variant for no intramolecular volume contribution (19). 

It is interesting to note that we have found several instances in which equivalent equations were constructed 
on the basis of distinct approaches. 

Let us now review briefly the various Zogarithmic equations in pressure. Our analysis of these equations 
suggested a four-parameter general expression (Table 4, first general case) encompassing most of the 
previously proposed equations (Table 4, cases a-f). However, we make it clear that we do not recommend 
its use except for the purpose of systematization. We observe that a model-based equation may appear as 
purely empirical if a solvent-related parameter is set free, as was done by Asano and Okada (13) and by 

TABLE 4. A guide of logarithmic equations in pressure 

Case Simplification CPm f" AVaJ Ref, 

First None 
general 

4 d =  bc 

this work 

l / c + p  l+cp  
P-Po l+CPO 

AVh +bc (- In - - 1) 

4 d=O 

AV,+- - In - - 1 )  
B+Po ( B + p o  p - p 0  B+po B + p  4 d=O, 

c = l/B(solv.) 

AV,(B+ Po) In - B + p  
B+PO d -  0, 

b = ( l / c  +p , )  AV,, 
P-Po 0 

c = l/B(solv.) 

3 f m  (27-29) 

2 *aJ (30-3 1 )  

3 f m  (3 8) 

3 AVp. -- (13,39) 
l / c + p ,  

b 2 AVpe - - (7,23-25) 
B+PO 

1 0  (19) 

Second none 
general 

2 0  

Third use of the Tait 
equation P-Po 

1 0  (40-42) 

" Number of fitting parameters. 
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Gavish (39) (Table 4, case d) with respect to the Owen-Brinkley equation (7) (Table 4, case e). We note 
hrther that no theoretical derivation has been advanced for the purely empirical equation suggested by an 
anonymous author (38) (Table 4, case c). It is also interesting to note that the equations corresponding to 
the first general and a-e cases in Table 4 differ only in the form of the pre-logarithmic factor. A second class 
of logarithmic equations in pressure is due to Reis and Segurado (36). These equations (Table 4, second 
general and a' cases) differ in the value for the limiting volume change at very high pressures. Finally, 
mention should be made of an empirical equation which assumes a linear relationship between Gibbs energy 
changes and the solvent density. Based on earlier work by Franck (40), this equation has been applied to 
ionization equilibria by Marshall and coworkers (41,42). Inserting the by now ubiquitous Tait isotherm for 
the solvent, it can be transformed into a logarithmic equation in pressure (Table 4, last case). Figures 4-6 
illustrate the fitting capability of some logarithmic equations. 

1.0 I 1 I I t 

0 
I 

200 400 600 800 

0.0 

-1.0 

-2.0 

-3.0 

Fig. 4 Plot of In (Us-') vs plMPa for the reaction of tri-n-propylamine with iodomethane in acetone 
at 30 "C. The curve drawn is for the equation with pre-logarithmic fictor (B+p)/@-p.) (Table 4, case b). 
Kinetic data fiom Ref. (1 1) and B = 72.83 MPa fom Ref. (43). 

1.0 

0.0 

-1.0 

-2.0 

-3.0 

I I I 1 

0 200 400 600 800 

Fig. 5 The same as in Fig. 4. The curve drawn is for the equation with 
pre-logarithmk factor (B+p,y (p-p.) (Table 4, case e). 
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COMPARATIVE ANALYSIS 
We have highlighted the fact that hyperbolic equations predict finite volume changes at very high pressures. 
Except for the linear case, polynomial and exponential equations in pressure cannot represent this feature. 
However, some, but not all, of the logarithmic equations yield finite values for AV-. This dual consequence 
of employing the logarithmic function can be ascribed to the varied use of the Tait equation. It is well 
known that the Tait isotherm predicts negative densities at finite pressures outside the experimentally 
accessible range (44). This awkward situation can be transmitted to equations resorting to the Tait isotherm. 
Fortunately, it can also be avoided. This is most clearly seen in Reis-Segurado's treatment. In fact, the 
difference between two molar volumes expressed by Tait isotherms goes to zero as the pressure becomes 
indefinitely large. 

We emphasize the importance of an analytical equation predicting finite volume changes at very high 
pressures. This feature is considered by Asano and Okada (13) to be one that a good function should satisfl. 
Let us return to the basic dissecting model for the interpretation of activation and reaction volumes. It is 
generally assumed that the intramolecular term is pressure-independent. On the other hand, both 
electrostatic and density treatments of changes in solvation volume agree in that the intermolecular term 
should vanish at very high pressures. Moreover, we are primarily interested in gaining information about the 
reacting system at ambient pressure from meaningful extrapolated quantities, and not in describing the 
system at inaccessible pressures. Therefore, within the framework of this model, good analytical equations 
are expected to yield finite values for AVm . This quantity was identified by Asano (24) as the intramolecular 
term. Noticeably, some of the equations specifically developed for ionization equilibria (18,19,41) predict 
no intramolecular contribution to the volume of ionization. Even the dissenting view of Inoue et al. (23) 
was severely criticized by El'yanov and Vasylvitskaya (45). 

We are firmly persuaded that a good analytical equation should predict finite activation or reaction volumes 
at very high pressures. This limiting value, interpreted as the intramolecular or intrinsic volume change, 
should appear in the equation as, or linked to, a pressure-independent parameter. It can safely be assumed 
constant in different solvents and in a series of similar reactions. A second parameter is required to express 
the solvating power of an activation or reaction event. It has been measured by the extra solvation number 
and varies with the solvent and within a reaction series. The remaining parameters in a good analytical 
equation should reflect the nature of the solvent. Until recently, only one such parameter was considered 
necessary. However, in addition to a parameter linked to the pure solvent, Reis and Segurado (36) 
introduced a parameter related to the properties of the solvating solvent. It is not yet clear whether or not 
this additional parameter depends on the reaction. Summing up, a good analytical equation in pressure 
should contain at least three adjustable parameters. The assumption of no intramolecular volume change, as 
in ionic reactions, allows elimination of one parameter. Another parameter may be eliminated by using an 
appropriate quantity for the pure solvent. 

To close, we present a practical guide to analytical equations in pressure. Most of the equations reviewed in 
this lecture comply to the general indefinite form 

CONCLUSIONS 

InK = a0 + a1 P + az&) + a#&) 
Polynomial equations correspond to&) = p', hyperbolic equations tofi)  = l/(l+a, p), and logarithmic 
equations to&) = In ( l+a4 p). General expressions for InK and AV are shown in Table 5 and expressions 
for AVO and AV- in the various particular cases are in Table 6. The exceptions are the exponential in 
pressure (Table 2), and the Reis-Segurado and the linear in density equations (Table 4, last three cases). 

TABLE 5. A practical guide of equations of the form In K = a,, + a, p + a, f (p) + a, p f (p): general 
expressions for In K and AV 

API In K -AV I RT 

P' 
ll(l+a,p) 

a, + 0 ,p  + ag2 + a,p3 
a 0  + alp + (a, + %PI / ( I +  U 4 P )  

u, + 2u#+ 3u3p= 

a, + (a,- %a,) 1 (144P12 

In (l+u,p) a,+ alp + (%+ U,P) ln (1 + %PI a, + a, (u2+u,p) / (l+a,p) + a, In (l+u,p) 
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TABLE 6. A practical guide of equations of the form InK = a, + alp + a l l @ )  + a,pf(p):  expressions 
for AVO and AV, 

Simplification AK - -  
RT 

Ref 

P2 a, =a, = 0 Q, 0 1  (10) 
a, = 0, a, / a2 = c(s0lv.) Ql fa (9) 
a, = 0 a1 f o o  (798) 

Q I  f o o  (2) a, = 0 
QI fa, , (6) none 

1 a1 = 0, a, = P(s0lv.) a3 - a, a 4  0 (19) 

none a, +a, -a,  a, 0 1  (13) 

In (l+u,p) a, =a, = 0, a, = l/B(solv.) a, a, 0 (19) 

u3 = 0 a1+Q2u4 a1 (13,391 
a2 = 0 a1 f W  (3 8) 
a,=a,a,, a, + 1.018 a, a, f o o  (26) 
(l+l/ a,p) In (l+a,p) = 

4 = a, a, ,  a, = l/B(solv.) 41 + a2 a4 f a  (3093 1) 

l+U,P a,=O. a3 - a2 a4 0 (16-18) 
a, = 0, a, = 4, a, a, (1- 04)  a1 this work 

a, = 0, a, = l/B(solv.) a1+a2a4 0 1  (7,23-25) 

1.018 + 0.461 (u4p)0.523 

a, =.a, a4 a, + a2 a4 fa, (27-29) 
none a1 + 0 2  a4 fa this work 

Equivalent equations result from uI = a, = 0 
Equivalent equations result from a, = 0 or a, = 0 or a, = - a, a, , 

or a, = a, = 0. 

Acknowledgments - We are gratehl to Dr Manuel Segurado for help in the 
preparation of this lecture and to JNICT (Portugal) for financial support. 

REFERENCES 

1. S.D. Hamann. Mod Aspects Electrochem. 9, 47-158 (1974). 
2. T. Asano and W.J. le Noble. Chem. Rev. 78,407-489 (1978). 
3. R. van Eldik, T. Asano and W.J. le Noble. Chem. Rev. 89, 549-688 (1989). 

4. S.D. Hamann and W.J. leNoble. J .  Chem. Educ. 61,658-660 (1984). 

5 .  M.J. Blandamer, Chemical Equilibria in Solution: Dependence of Rate and Equilibrium Constants on 

6. C. Walling and D.D. Tanner. J.  Am. Chem. Soc. 85,612-615 (1963). 

7. B.B. Owen and S.R. Brinkley. Chem. Rev. 29,461-474 (1941). 

8. H.S. Golinkin, W.G. Laidlaw and J.B. Hyne. Can. J .  Chem. 44,2193-2203 (1966). 
9. D.A. Lown, H.R. Thirsk and Lord Wynne-Jones. Trans. Far- Soc. 64, 2073-2080 (1968). 

Temperature and Pressure, pp. 59-84, Ellis Horwood, Chichester (1992). 

10. C.T. Burris and K.J. Laidler. Trans. Faraday Soc. 51, 1497- 1505 (1955). 

11. S.P. Sawin, Ph.D. Thesis, University of Illinois, Urbana (1971). 

12. H. Kelm and D.A. Palmer. In High Pressure Chemistry, edited by H. Kelm, pp. 28 1-309, Reidel, 

13. T. Asano and T. Okada. J .  Phys. Chem. 88,238-243 (1984). 

Dordrecht (1978). 

0 1996 IUPAC, Pure and Applied Chemistry68, 1541-1551 



Pressure dependence of rate and equilibrium constants 1551 

14. C.A.N. Viana, A.R.T. Calado and L.M.V. Pinheiro. J. Phys. Org. Chem. 8,63-70 (1995). 
15. C.A. Eckert. Ann. Rev. Phys. Chem. 23,239-264 (1972). 
16. H. Heydtmann and H. Stiegger. Ber. Bunsenges. Phys. Chem. 70, 1095-1 103 (1966). 
17. B.T. Baliga, and E. Whalley. Can. J. Chem. 48, 528-536 (1970). 
18. B.S. El'yanov and S.D. Hamann. Aust. J .  Chem. 28,945-954 (1975). 
19. M. Nakahara. Rev. Phys. Chem. Jpn. 44, 55-64 (1974). 
20. L.A. Dunn and R.H. Stokes. Trans. Far+. Soc. 65, 2906-2912 (1969). 
21. R.E. Gibson. Am. J.  Sci. 35A, 49-69 (1938). 
22. J.H. Dymond and R. Malhotra. Int. J i'hermophys. 9, 941-951 (1988). 
23. I. Inoue, K. Hara and J. Osugi. Rev. Phys. Chem. Jpn. 48,44-59 (1978). 
24. T. Asano. Rev. Phys. Chem. Jpn. 49, 109-1 19 (1979). 
25. T. Asano, T. Yano and T. Okada. J. Am. Chem. Soc. 104,4900-4904 (1982). 
26. S.W. Benson and J.A. Berson. J. Am. Chem. Soc. 84, 152-158 (1962). 
27. J. Orszigh, M. Barigand and J.-J. Tondeur. Bull. Soc. Chim. Fr. 1685-1689 (1976). 
28. B.S. El'yanov and E.M. Gonikberg. Bull. Acad Sci. USSR, Div. Chem. Sci. 26, 1557 (1977). 
29. B.S. El'yanov and E.M. Gonikberg. J .  Chem. Soc., Faraday Trans. I 75, 172-191 (1979). 
30. W.E. Jones, L.R. Carey. and T.W. Swaddle. Can. J .  Chem. 50,2739-2746 (1972). 
31. N.A. North. J.  Phys. Chem. 72,931-934 (1973). 
32. M.G. Evans and M. Polanyi. Trans. Farachy Soc. 31,875-894 (1935). 
33. Y, Kondo, H. Tojima and N. Tokura. Bull. Chem. Soc. Jpn. 40, 1408-1412 (1967). 
34. G. T. Hills and C.A.N. Viana. In Hy&ogen-Bonded Solvent Systems, edited by A.K. Covington and P. 

35. C.A.N. Viana. Rev. Fac. Cigncias Univ. Lisbaa, 2a Ser. B11,5-187 (1967-1968). 
36. J.C.R. Reis and M.A.P. Segurado. 24th IUPAC Conference on Solution Chemistry, Lisbon, August 29 

37. B.B. Owen and S.R. Brinkley. Phys. Rev. 64,32-36 (1943). 
38. Anonymous. Quoted in Ref. (13). 
39. B. Gavish. J.  Chem. Soc., Faraday Trans. I 85, 1199-1206 (1989). 
40. E.U. Franck. Z. Phys. Chem. (Frankj%rt) 8, 192-206 (1956). 
41. W.L. Marshall and A.S. Quist. Proc. Natl. Acad Sci. USA 58,901-906 (1967). 
42. W.L. Marshall andR.E. Mesmer. J .  Solution Chem. 10, 121-127 (1981). 
43. R. Malhotra and L.A. Woolf. J .  Chem. ntennodyn. 23,867-876 (1991). 
44. K.E. Weale, Chemical Reactions at High Pressures, p. 20, Spon, London (1967). 
45. B.S. El'yanov and E.M. Vasylvitskaya. Rev. Phys. Chem. Jpn. 50, 169-184 (1980). 

Jones, pp. 261-268, Taylor and Francis, London (1968). 

- September 2 (1995). 

0 1996 IUPAC, Pure and Applied Chemistry68, 1541-1551 




