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Abstract - Pair distribution functions, internal energy, chemical potentials and dielectric 
constant, as well as solvation interactions of charged hard sphere - hard dipole mixtures 
have been investigated in the framework of the MSA . The results are discussed with regard 
to limitations of the model and to the inherent approximations of the MSA. 

1. Introduction 
The ionic fluid is a model for electrolyte solutions and molten salts. In the framework of this model thermodynamic 

and structural properties are described on the McMillan-Mayer (MM) bvel considering the ions as particles in an 
isotropic dielectric medium representing the solvent [30], or at the Born-Oppenheirner (BO) level treating also the 
solvent as a system of molecules [MI. The MM mean force potentials at infinite dilution of the ions can be justified 
by a molecular theory on the BO level, where the short range interactions describe a reference system with separately 
estimated properties and the long range electrostatic interactions are treated as perturbations in a generalized cluster 
expansion in combinations with integral equation methods [ZO, 251. 
The Mean Spherical Approximation (MSA) of ion-dipole systems is a first step of such an expansion. Properties of 
charged hard sphere - hard dipole mixtures such as pair distribution functions, pressure, internal energy, chemical 
potentials and dielectric constant, as well as solvation energies and excas properties of the ionic subsystem like 
activity and osmotic coefficients [I, 11, 12, 14, 15, 341 will be discussed with regard to the limitations of the model 
and of the inherent approximations of the MSA. Higher order corrections to structural and thermodynamic properties 
are presented for the contributions of various subsystems of the ion-dipole mixture, calculated by nonlinear integral 
equations of the Reference Hypernetted Chain (RHNC) or similar approximations, and are compared with computer 
simulations. The ion-ion mean force potential at infinite dilution is discussed for different solvent models, and the 
connection between MM and BO descriptions is studied by the consideration of the contributions to  the solvation 
interactions [21] of the ions. 
All models presented here are based on classical Hamiltonians H N ~  of N' particles ((N' - N) solvent particles and 
N solute particles), consisting of a potential energy term UNI (assuming pair interactions only) and a kinetic energy 
term K N I  

The species in the electrolyte solution are represented by subscripts a, p ; the argument i stands for the full set of 
spatial coordinates of a molecule or an ion of species a ( j for p ) involving the coordinates of the particle center, and 
in the case of anisotropic particle interaction an additional orientation vector of the molecule. The grand partition 
function of this multicomponent system is 

MM models considering ions and the ion aggregates as the only individual particles use the feature that the grand 
partition function, eq. (2), can be transformed at  osmotic equilibrium into an effective grand partition function 
involving only the solute species ( posm: osmotic pressure) 

Assuming additivity of the pair potentials W a b ( i j )  of mean force of the solute particles at infinite dilution yields an 
Hamilton function H N  of the N solute particle system of species a, b, . . . as the starting point for a theory of excesa 
properties at MM level (subscripts a,b, ... are used to indicate the MM level, in contrast to a, p,... used on the BO 
level). 
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The M M  theory is conceptually simpler than the BO theory , but it requires additional information on the solvent 
averaged pair interactions, Wab(ij), of the solute species at infinite dilution. 
Characteristic for the description of ionic fluids on both levels, MM as well as BO level, are the long range interaction 
forces between the particles leading to structural peculiarities such as screening and charge layering. 

2. Integral equation methods on the MM level 
The crucial point for the estimation of thermodynamic excess properties is the proper calculation of the ionic 

pair-distribution function gab( 12) from the input potentials. 

V’2Jexp(-/3v~)d(3). . . d ( N )  
J exp( - .pvN)d(  1) . . . d( N) gab(12) = 

where V’ is a generalized volume, also containing the integration over angular variables. 
The calculation is achieved by use of the Ornstein-Zernike (OZ) equation 

(5) 

and a general closure relation 

gab(12) = aP[-@’ab(l2) + hab(12) - cab(12) + &b(12)] (7) 
where hab(12) = gab(12) - 1 and cab(12) are the total and direct correlation functions, respectively. Baa(12) is the 
sum of so-called elementary diagrams constructed from integrals over h functions (bonds),which are not given by 
convolution integrals . 
An essential step to avoid Coulomb divergencies in the model calculations is screening with the help of renormalized 
long range potentials. Screening leads to the low density limit 

of the potential of mean force 

Waa(12) = -k~Tln[gab(12)] (10) 
of a dilute system of classical point charges. Wab(12) is the potential of mean force at finite electrolyte concentrations, 
in contrast to wat,(12) obtained at infinite dilution. 
The input quantity in the interionic theory ~ ~ ( ( 1 2 )  contains the Coulomb potential and a short range part wia(l2) 

w,b(12) = wZb(12) + wfFuL(12) (11) 
with a short range potential composed of repulsion terms, terms describing the mutual ionic polarization, and the 
overlap of the ionic solvation shells 

~za(12)  = w,CaOR(12) + w;T,OLv(12) (12) 
The calculation of the pair correlation functions of ions gab(12) in terms of the wab(.) is executed with the help 
of generalized cluster expansions which is a combination of cluster and integral equation techniques. Starting with 
Debye screening for the Coulomb interaction which corresponds to c = -pwCouL and h = -,BWDEB (here and in 
the following text boldface letters are used for matrix representations) one defines the remainder terms 

c = -pwcouL + bc ; h = -,BWDEB + bh (13) 

bh - bc = 6c * h -  /3WDEB *bc  - pWDEB *bc*  h (14) 

g = exp(-/3w0 - mDEB + bh - bc + B) (15) 

and the OZ equations for the remainder terms 

A general closure relation follows from the cluster analysis 

Setting B=O leads to screened integral equations (Allnatt-HNC closure)[3]. Numerous algorithms were developed 
for the solution of such equations. Characteristic features are the use of general matrix integral equation systems, 
numerical Fourier transformation of the OZ equation, either direct iteration methods or Newton-Raphson methods 
for the acceleration of iteration [28]. A new feature is the acceleration of iteration by vector extrapolation [22]. These 
methods are generally used, also in the case of short range interactions. Coulomb interactions require renormalization 
as given by Allnatt [3] and Ng [31]. Combinations of these methods are in use [23] aa well as direct or accelerated 
iterations with different renormalizations [22]. 
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Thermodynamic excess functions at  the MM level are computed along well known formulae such as the osmotic 
coefficient eMM 

The potentials w,S6OLv can be chosen such as to  fit the experimental data in the dilute solution regime. 
The reproduction of the experimental data is satisfactory on the MM level [8, 10, 171, but the role of the solvation 
interactions can only be really ,understood on the BO level. 

3. Generalized virial expansions on the BO level 
The starting point for a virial expansion is an appropriate model of the intermolecular pair potential u,,412) 

which may be conceived as a sum of a short range part ulf(12) and a long range contribution ukf(12) possibly 
containing terms from the mutual orientation of the particles. In the present introductory treatment the long range 
electrostatic interactions are modelled by point charges for ions and by point dipoles for polar molecules. The short 
range interactions make up the reference system describing the mutual impenetrability of the particles as well as the 
short range attractive van der Waals forces. The long and short range interactions demand different approaches. 

u,/9(12) = u$(12) + 7 4 3 1 2 )  (17) 

The pair interaction potential of a system with only short range interactions u$(12), the so-called reference system, 
may be used t o  calculate the correlation functions by integral equation approximations derived from the OZ equations 
of the reference system where ukf(12) = 0 . 

ho = co + co * h" 

The inclusion of the long range potential u$(12) introduces screening, here under the influence of the structure 
factor of the underlying reference system. 
Extraction of the reference system and definition of the remainder 

(18) 

c = C + 6 c  ; c=c0-puLR 

h = H + 6 h  ; H = h o + G  

first leads to  the screening relation 

H = C + C * H  

and then to OZ equation for the remainder: 

6h - 6c = H * 6c+ 6 c *  h + H *6c  * h 

We will revert in the following text to  this new sreening equation with its consideration of short range structure factors 
as well as to  the problem of angular dependent interactions in the case of ion-dipole and dipole-dipole interactions. 
The general closure relation is as stated in refs. [4, 331 

(22) 

g = g"exp(G +6h-6c +6B) ; 6B = B - Bo 

Neglection of the 6B term leads to the reference hypernetted chain (RHNC) equation. 

4. Ion-dipole mixtures in the MSA 
Numerous attempts were carried out to solve the problem of the hard ion - hard dipole mixture [l, 16, 32, 13, 24,271 

containing the interactions sketched in figure 1.  
The potentials can be described by the general formulae 

and the rotational invariants 

6000(12) = 1 ; 311712) = [3(&P)(iqP) - (&iq)] 

OO"(12) = (GP) ; @'0'(12) = (GP) ; @"0(12) = (%A) 
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Fig. 1 Dipole - dipole, ion - ion, and ion - dipole interactions 

Fig. 2 The reduced internal energy E of a mixture of hard ions and dipoles simulating the solution of a 1- 
1 electrolyte in methanol at 25°C. Solvent parameters: Effective diameter u, = 4.07 * 10-"m, number densi- 
ty pa = 1.48 * 1028m-3, effective dipole moment peff = 8.3122 * , ( € t h  = 32.64 ). Ion parameters: 
I z + (  = 12-1 = 1, ~i = 4.07* 10-lOm. (1): F; (2): Eii; (3): Ei.; (4): Eaa. 

The angle dependent potential leads to angle dependent correlation functions. A useful representation is the invariant 
expansion of the correlation functions [ll], which is of the same form as the expansion for the potential, eq. (24). 
The interaction parameters do and da characterize the ion and dipolar subsystems, respectively. 

The discussion of the MSA approximation in the framework of the generalized virial expansions on the BO level, eqs. 
(22), uses at the lowest step the correlation functions of the Random Phase Approximation (RPA). 

b c = b h = O  ; h = h o + G = H  (28) 

The OZ equations for the whole system change into the screening equations (21). The screened potential Gap(12) is 
called the 'chain sum'. If the reference system is a mixture of hard spheres with contact distances uap an optimizing 
procedure is possible, demanding that Gap(12) = 0 for r < bag.  When the direct correlation functions of the reference 
system co are calculated in the Percus - Yevick approximation for a mixture of hard spheres, the optimized RPA is 
called the mean spherical approximation (MSA) and can be analytically solved. 

r <aa@ ; (29) 
1 H = - I  ; c=-puLR ; r >uap ; uap = ,(ua+up) 

The solution is obtained by invariant expansion of the correlation functions and transformation of the OZ equations 
into a solvable set of matrix equations (11, 121. Useful forms for the calculations are given in [14, 151. From these 
results extensive calculations were carried out on solvation thermodynamics [34]. Some examples will be give here of 
- calculation of thermodynamic properties for the case of equal ionic sizes . Figure 2 shows the reduced internal energy 
E of a mixture of hard ions and dipoles simulating the solgion of a 1-1 electrolyte in methanol at  25°C as a sum of 
ion - ion (Eii) -, ion - dipole (Ei , )  -, and dipole - dipole ( E,,)  - contributions. 

In figure 2 the solvent parameter pa was calculated from the molar volume V,,, according to pa = N A / V ~  and u, as 
u, = (p,)-lI3, corresponding to a space filling factor q = n/6. An effective dipole moment p e f f  was used to produce 
the experimental dielectric constant c of the solvent according to Wertheim's MSA result [35]. The mean ion diameter 
was arbitrarily chosen . 
Figure 3 shows the concentration dependent dielectric constant cth(c)  [l] of a mixture of hard ions and dipoles 
simulating N a I  and BurNBr solutions in methanol at 25°C. The solvent molecule parameters are those of figure 2, 
the mean ionic contact distances were arbitrarily chosen. The experimental permittivity data for the comparison are 
taken from microwave dielectric relaxation experiments [9]. 
The mean ionic activity coefficient y*(c) of a mixture of hard ions and dipoles simulating N a I  and BusNBr solutions 
in acetonitrile at 25°C is given in figure 4. The solvent parameter and the effective dipole moment were calculated 
as before. The mean ionic contact distances were chosen in such a manner that a qualitative fit of the experimental 
activity coefficients known from vapor pressure measurements [6, 71 was established. 
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Fig. 3 Concentration dependent dielectric constant c of a mixture of hard ions and dipoles simulating N a l  
and Bu4NBr solutions in methanol at 25°C. Solvent parameters as in figure 2. Ion parameters: BurNBr,  ui = 
6.8 * 10-"m. ( 4 ) :  cth (MSA), (2): (Experimental data [9]) . N a l ,  Ui = 6.0 * 10-"rn, (3): cth (MSA) ; (1): 
(Experimental data [9]). 

Fig. 4 The mean ionic activity coefficient y*(c) of a mixture of hard ions and dipoles simulating N a l  and 
Bu4NBr solutions in acetonitrile at 25%'. Solvent parameters: effective diameter ud = 4.44 * 10-lOm, number 
density pI = 1.14 * 1028m-3 at 298.15 K, effective dipole moment p G f f  = 9.79 * 10-30Cm ,( 6th = 35.93 ). Ion 
parameters: Bu4NBr, ui = 7.5 * 10-lOm, (4 ) :  y*(c) (MSA); ( 3 ) :  (Experimental data [q). NaI,  ui = 6.0* 10-%, 
(1): y*(c) (MSA) ; (2): (Experimental data [S]). 

The three foregoing examples were chosen to show that already very rough approximations such as fits of the solvent 
properties by effective dipole moments and radii , and description of the repulsive interactions of the ions by an 
appropriate mean contact distance ui, yield already correlations with the correct tendency of the concentration 
dependence o€ the thermodynamic functions. 

5. Ion solvation in the BO and MM approaches 
The mean force potential at infinite dilution w4b(r) of the ions a and b follows from the infinitetdilution limit of 

the ion-ion radial distribution function 

P*+O lim g,Bb(r) = g,Beo*"(r) = "XP[-Pwob(r)] (31) 

with the help of direct ionic interaction potentials on the BO level 

The resulting effective interaction potentials w4b(r) depends in the long range part on a calculated permittivity cc4ic 
and on a short range solvation potential 

The solvation potential witLv(r), in turn, is subdivided into two parts. One part, wt:LV*RS(r), is due to the 
contributions of the reference system, and the other part, wffLV,EL(r) ,  stems from the electrostatic interactions 
between the ions and the solvent molecules 

(34) 
SOLV SOLV,RS SOLV,EL 

w4b = W 4 b  + w4b 

wf:LV8RS(r) is that part of the solvation potential due to the interaction of the ions a and b in a solvent made up 
by dielectric nonpolar and nonpolarizable molecules. This quantity is calculable with the help of ion distribution 
functions g! t (r )  at ion number density pi = p+ + p- with a potential 

in a dilute solution of number density p, . The reference system interactions ( solvent-solvent and ion-solvent potentials 
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Fig. 5 Reference system contribution to the solvation interaction, wzfLV>RS(r), from ion-ion distribution func- 
tions of charged soft spheres in a continuous solvent (MM level) and in a soft sphere molecular solvent (BO level). 
Ion parameters: p,' = (p+ + p - ) u :  = 0.1, b = Plz+z-le2/(4nq,ca~) = 6. Solvent parameters: p: = p,u:  = 0.85, 
E* = peL' = 0.5. wSfLV'RS(r): (l):(RHNC); (2): (MC). w ~ ~ v 8 R s ( r ) :  (3):(RHNC); (4)(MC). 

Fig. 6 Influence of the ratio of the ions and solvent dipole radii, ui/u,, on the potential of mean force between two 
ions at infinite dilution at  25OC. Parameters of the solvent: ua = 3 * 10-"rn, reduced density p: = 0.8 and reduced 
dipole moment p* = ps/d- = 1.5. The dielectric constant in LIN approximation [24] is fth = 32.75 . 
Parmeters of the ions: I+ = -I- = 1. (1): Oi/Oa = 1; (2): O i / o ,  = 4/3; (3): ui/u8 = 2; 

and the short range parts of the ion-ion interactions ) are of the Lennard Jones type or, alternatively, of the soft 
sphere type 

In that case Debye screening may be assumed according to eq. (8), and g,Bbo(r) takes the form 

On the other hand the ion- ion distribution function gzM(r)  of a dilute ionic gas with interactions according to eq. 
(35), may be estimated at equal number density pi to be 

(38) MM g46 = exp (-p[uf?(r) + W2EB(r)1) 
From eqs. (37) and (38) follows the interpretation of w:fLV,RS(r) with the help of the BO and MM distribution 
functions 

Figure 5 shows the potential w:fLV8RS(r) from ion-ion distribution functions of charged soft spheres in a continuous 
solvent (MM level) and in a soft sphere molecular solvent (BO level). The reliability of the integral equation appro- 
ximations may be supported with the help of a MC method. The main characteristics of the MC method used are 
the Metropolis algorithm, periodic boundaries [2], and of a reaction- field corrected cutoff-sphere method [5]. Up to 
1.7 * lo7 configurations were considered for 2000 particles. 
The electrostatic contribution to solvation interactions is obtained from the ion - ion correlation function in the limit 
of infinite dilution in an ion - dipolar mixture . Various examples can be found in the literature for hard ion - hard 
dipole mixtures at different levels of approximation [13, 24, 271, and also for related models such as Stockmayer 
solvents [26]. The contribution of the electrostatic interactions has the general form 

with a rapidly decaying oscillating function Fab(r) [16, 241. Figure 6 shows the role of the relative particle sizes of 
spherical ions and solvent molecules in a hard particle mixture. 
If ions and solvent molecules are of equal size the influence of the electrostatic contribution is dominant. In the case 
where the ratio of ion to dipole size enlarges, the reference system contribution is of the 1383118 magnitude as the 
electrostatic contribution. 
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6. Conclusions 
Despite the simplicity of the model consisting of polarizable spherical ions dissolved in a system of spherical dipole 

molecules, it represents the natural complexity of an electrolyte solution with particle interactions between individual 
ions and solvent molecules of variable sizes. An appropriate treatment of the interaction forces in the interparticle 
and reference forces gives insight in the nature of solvation and links the BO and MM level models. The very simple 
BO level model was chosen to illustrate without unnessecary complication the efficient poseibilities of the new integral 
equation method. The hard sphere ion-dipole model already reproduces the thermodynamic and structural properties 
of electrolyte solutions surprisingly well with the help of meaningful molecular parameters. The underlying rnathe- 
matical tool for the development of an appropriate MSA method is laborious but the resulting exprersions are rather 
simple and useful for the description of thermodynamic properties such as activity coefficients and also permittivities. 
Refinement of the solute - solvent model by the use of nonisotropic molecular particles yields better approximations 
but requires much higher mathematical expenditure. 
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