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Abstract: Excitons in quantum structures with alloy as well as interface disorder 
are treated. The optical properties follow from a solution of the Schrodinger equa- 
tion describing the exciton center-of-mass motion. The absorption linewidth is 
always smaller than the underlying potential variation (motional narrowing). Us- 
ing a kinetic approach with acoustic phonon scattering, luminescence lineshapes 
are calculated showing non-equilibrium exciton distributions. Spatially resolved 
spectroscopy allows to extract information on individual exciton eigenstates. 

INTRODUCTION 

Excitons have been found to determine the optical properties of a wide variety of solid state systems. 
In semiconductor physics, quantum structures are of particular importance since their design allows 
to concentrate on specific properties which are not available within bulk samples. The confinement of 
electrons and holes due to the energetic band edge variation between well and barrier material leads 
to a dramatic strengthening of the excitonic features [l]. Thus, undoped semiconductor quantum 
structures are an ideal playground for exciton physics. However, the definition of the interfaces on 
an atomic scale is never as ideal as theory would like to have it. Even with the highly sophisti- 
cated molecular beam epitaxy (MBE), interface fluctuations of a few monolayers (ML) can be hardly 
avoided. A further source of disorder is alloy fluctuation since most quantum structures have a ternary 
compound in the barrrier or in the well. These disorder effects determine the inhomogeneous part of 
the exciton line seen in optical measurements and even tend to dominate their linewidth in narrow 
quantum structures. Rather than considering this as an unwanted feature, the exciton linewidth 
in photoluminescence (PL) is usually taken as a quality measure of the growth process. A further 
indicator is the Stokes shift between the peaks in PL and absorption (or rather photoluminescence 
excitation, PLE). 

The theoretical investigations and simulation results of the present paper aim at a quantitative under- 

Fig. 1: Schematic view of the exciton in a ternary QW with rough interfaces (left) and 
the resulting correlated COM potential (right). 

1179 



1180 R. ZIMMERMANN eta/.  

standing of the relation between growth-induced disorder effects and optical spectra in semiconductor 
quantum wells (QW). We have developed elsewhere a Monte Carlo simulation of the MBE growth 
of QWs which provides the necessary input for the subsequent exciton calculation [ 2 ] .  Here we show 
that alloy disorder and roughness of the barrier-well interface contribute differently to the random 
potential of the exciton center-of-mass (COM) motion. Due to the averaging by the exciton relative 
motion the potential is correlated at least over distances of the exciton Bohr radius a B ,  but reduced in 
energetic variation (Fig. 1). Solving the Schrodinger equation in this disordered potential landscape 
[ 3 ]  gives directly the optical density (OD) of the 1s exciton as seen e.g. in absorption. More important 
for a comparison with experiment are luminescence spectra. Due to disorder, at low temperatures 
the excitons do not reach thermal equilibrium within their lifetime, and the PL lineshape deviates 
strongly from the OD. Therefore, a kinetic equation for scattering with acoustic phonons is derived 
using the disordered eigenstates as basis. A "relaxation mobility edge" shows up clearly in the distri- 
bution over energy, dividing the region of dominating band transport from that of hopping character. 
The calculated Stokes shift shows a non-monotonic temperature dependence in agreement with recent 
experiments. The kinetic approach can be easily modified to describe PLE which is shown to deviate 
markedly from the OD below the relaxation mobility edge, putting doubts on the usual assignment 
of PLE with OD. Finally, experimental micro-photoluminescence spectra are discussed as providing 
a fingerprint of individual disorder eigenstates. 

CENTER OF MASS EXCITON EQUATION 

The exciton Schrodinger equation in effective mass approximation 

is subplemented by confinement potentials Wa(ra) ( u  = e, h )  which describe the spatial variation of 
the local band edges. Having in mind a GaAs QW inbetween Al,Gal_,As barriers. it is only the 
position of the A1 atoms which defines the structure. Both alloy disorder and imperfect interface are 
coded into the A1 occupation q(r) = 1 resp. 0, and we put Wa(r) = EfaAs + A a q ( r )  with the band 
edge difference A, of the binary materials. 
If the exciton binding energy is well below the disorder-induced broadening we can concentrate on 
the lowest bound state 1s and factorize the total wave function into 

q u ( r e ,  r h )  = u e ( z e )  u h ( z h )  d'ls(pe - P h )  $a(R)  ( 2 )  

introducing the 2D center-of-mass coordinate R = (rnepe + m h p h ) / M  with the exciton kinetic mass 
M = me + m h .  Both the confinement wave functions u,(za) and the relative wave function q l s ( p )  
obey Schrodinger equations of the in-plane averaged QW structure with local A1 concentration ~ ( z )  = 
(v(R.z)) .  Finally one is left with the COM equation 

The random COM potential 

V(R) = / dR' C .Oz d;s(Pa(R - R')) / dz u i (z )  A a  [v(R', z )  - .(.)I (4) 
a=e,h 

is spatially correlated over the exciton Bohr radius ag but scaled differently for electron and hole 
(pP = k f / i n h ,  P h  = &'/me). Equations (3)  and (4) are the starting point for calculations on simulated 
structures. Note that the Is exciton energy h u z  of the averaged QW is taken as zero of energy in what 
follows. For dipole-allowed transitions, the exciton oscillator strength is related to the probability to 
find electron and hole at  the same position, 
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Fig. 2:  Calculated optical density (OD) of a 10 ML A1,SGa  AS quantum well ( L ,  = 2.8nm).  
Left: Motional narrowing of the OD compared to the COM potential distribution P (u  =8 meV). 
Right: Optical density of a 160x 160 nm area generated via MBE growth simulation. Solid curve 
-ful l  solution of the in-plane exciton equation, dashed curve -factorization of the C O l I  motion. 

and dropping constant prefactors the optical density is given by 

FVe have shown elsewhere [3] that the calculated OD is slightly asymmetric towards higher frequencies 
and exhibits a reduced width compared to the underlying Gauss potential distribution. This has 
been called motional narrowing due to the COM motion, as found before in the study of ID excitons 
[4]. Whereas these results had been obtained on artificially generated potentials (Fig. 2, left). we 
have implemented recently a simulation of the MBE crystal growth in order to get more realistic 
structures [a]. In the right part of Fig. 2 the calculated optical density is displayed, based on a 
simulation of a 10 monolayer QW (growth rate 1 ML/s, growth temperature 870 I<). The disorder is 
found in the generated A 1  occupation q(r). Deep in the barriers, the A1 atoms tend to be randomly 
distributed according to their average concentration (z = 0.3). Within the interfaces, however, the 
A1-A1 correlation function has a long-range component which is due to the island formation during 
growth. On a reduced spatial grid we have solved the full four-dimensional electron-hole problem 
within the QW plane, using the time evolution of the inhomogeneous exciton equation [5]. In this 
way we were able to check if the factorization between in-plane COM and relative motion i n  Eq. (2)  
is justified or not. For the present parameters, the agreement is reasonably good in the Is region 
(Fig. 2 ,  right part). Around E = 0 (confinement gap), higher excited exciton states as well as the 
Sommerfeld-enhanced continuum show up which is clearly outside the 1s factorization Ansatz. 

ALLOY AND INTERFACE DISORDER 

Knowing about the specific correlations at the interfaces, we consider the following simple model which 
allows to disentangle alloy and interface disorder more clearly. We assume that a random uncorrelated 
alloy of constant concentration ( A ( r ) )  = zo fills the barrier up to the interface z = h(R) which gives 

?7(R,z) = O ( h ( R )  - z ) A ( R , z )  ; A(r)  = 1 resp. 0 .  ( 7 )  

Here, the interface has been characterized by thickness fluctuation h and correlation length i via 

(h(R)h(R’)) = h2exp(- IR-  R’/’/2C2). (8) 

For small h ,  the in-plane 41-Al correlation can be cast into (Vo - cation volume) 
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Fig. 3: Distribution of radiative rates (left) and resulting optical den- 
sity (OD) compared with the excitonic density of states (DOS) (right). 

AlGaAs quantum well simulation with L,  = 5 nm and u = 8 meV. 

and used to evaluate the potential variance r ~ '  = (V2(R)) .  The first term on the RHS of Eq. (9) 
is due to alloy disorder in an ideal structure, whereas the second one has to be identified with the 
interface roughness, and we may split the variance as u2 = r~& ,  + r ~ ? ~ ~ ~ ~ ~ ~ ~ ~ ~ .  Adopting an exponential 
exciton Is wave function with Bohr radius U B  exceeding the interface correlation length (, we get 

Ii,b = A, Ab /" d z  u % ( z )  u i ( z )  ~ ( z )  . 

Closely related expressions have been derived for alloy-broadening of excitons in bulk mixed crystals 
[6] and in ternary QWs [7] .  

For the interface part, application of 5 0  A, u:(O) = jdE,/dL, I leads to 

In both cases, the energetic fluctuations of the COM potential are reduced by the ratio between 
statistically independent volume and exciton averaging volume [ 8 ] ,  here (u;L,). Therefore, a direct 
assignment of r~ or exciton linewidth to the energy fluctuations on an atomic scale is not possible. 
The product h . ( entering Eq. (11) can be interpreted as island height times size. Cpon growth 
interruption in the MBE process, h is expected to decrease, whereas ( gets larger. Therefore, it  is 
not clear a priori if growth interruption leads to a reduction of linewidth or not [9]. If eventually C 
exceeds the exciton radius U B ,  the exciton line splits into a multiplett related to discrete monolayer 
energies. The present theory could be extended to that case, too. 

EXCITON KINETICS AND LUMINESCENCE 

The spontaneous radiation emitted from an exciton state cy is proportional to its occupation N ,  and 
its radiative recombination rate r,. Apart from a constant prefactor, the luminescence intensity at 
frequency w follows from summing over states as 

I ( w )  = C r,  N ,  7: S(hw - 8,) 
a 

The decay rate r ,  (inverse radiative lifetime of state a )  is given by [ lo]  
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Fig. 4: Exciton kinetics in a QW with interface roughness (r = 8meV,  aB = l l n m ) .  Full 
curves - PL, dashed curves - OD, and occupation N, on a logarithmic scale. Inelastic exciton 

scattering via acoustic phonons held at  T = 5 K (left) and T = 50 K (right). 

with Kane's interband momentum matrix element P and the index of refraction n. As in Eq. ( 5 ) ,  the 
only state-dependent ingredient is the optical matrix element M:. Throughout this section. para- 
meters for a single G a . 4 ~  QW with L,  = 5nm embedded into .41,3Ga,7.As barriers are used. If Ma is 
given in nm we have r ,  = M: . 1.7 . lo7 s-'. The distribution of radiative rates is shown in Fig. 3. 
Polariton effects in QWs dictate that all excitons with in-plane COM momentum between zero and 
qmax = w,/c' are able to recombine radiatively [ll]. We have checked that in our present simulation 
the typical wave function localization lengths obey ll,, qmax < 1, and therefore the simplified expres- 
sion Eq. (13) holds perfectly. 

The new quantity to be determined for the luminescence is the exciton occupation ?Ye. At low exci- 
tation, complete thermal equilibrium would result in a Boltzmann distribution Are N exp( - & / l c ~ T ) ,  
but we expect strong deviations in particular at low temperatures. The competing mechanisms are 
thermally activated exciton transfer to the next available quantum state and the finite exciton lifetime. 
This can be described by a kinetic equation 

which is linear in the occupation since we consider low excitation conditions (exciton-exciton inter- 
action can be neglected). For excitation high in the band, the rapid initial cooling via emission of 
LO optical phonons can be visualized as a nearly state-independent generation rate G, = Io. Below 
the LO threshold, the final inelastic scattering is due to acoustic bulk-like phonons with linear dis- 
persion wp = u q ,  following Takagahara [la]. Using standard deformation potential interaction and 
the factorization of the total exciton wave function Eq. ( a ) ,  the transition rate can be written as 

where the simplifying assumption of mainly in-growth momentum transfer to the phonon has been 
made (note that L,  is smaller than the characteristic in-plane length u g ) .  The spatial overlap between 
initial and final exciton state is crucial for the magnitude of the phonon scattering rate. Taking here 
realistic wave functions from the simulation improves over earlier attempts with ad hoc localized wave 
functions [la]. The scattering form factor 
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Fig. 5: Simulated photoluminescence excita- 
tion spectrum (PLE) in comparison with lu- 
minescence (PL) and optical density (OD). 

T = 5 K ,  other parameters as in Fig. 4.  

contains the phonon distribution function n ( E )  = (exp(E/kBT) - 1)-' taken in equilibrium. Apart 
from bulk material parameters (deformation potential constants D,, sound velocity u ,  mass density 
p )  the Fourier transform of the confinement wave function u, enters, 

Simulation results for the steady state luminescence are displayed in Fig. 4 as full curves and compared 
with the optical density (dashed curves). The Stokes shift between PL and OD maximum is clearly 
seen, together with a reduction in linewidth. The individual occupation of states is visualized by 
plotting points N,  over €, on a logarithmic scale. At elevated temperatures this is close to the 
Boltzmann distribution since all states can frequently emit and absorb phonons to reach equilibrium. 
At lower temperatures, effective equilibration is restricted to the high-energy states which have a 
large wave function extension (band-like transport). But below the line center, locadjzation gets more 
important, and the phonon transition between such tail states residing in different regions is hindered 
by an exponentially small overlap (hopping transport). Within the radiative lifetime, these states 
cannot equilibrate, and their occupation is dominated by the radiative rate being not much energy 
dependent. Although there is some spread in N ,  one may think of a relaxation mobility edge. and the 
curvature of the occupation around the edge is responsible for the shrinkage of the PL linewidth. The 
present results justify on a microscopic level the two-class exciton kinetic model introduced recently 
[13] to interpret PL spectra in 11-VI semiconductor QWs. 

Near zero temperature the calculated PL lineshape compares rather well with a classical kinetic de- 
scription due to Wilkinson et al. [14] who assumed that all excitons have time to "roll" into the 
nearest minimum of a disordered potential landscape, and could derive analytically the probability 
to find relative minima at a given energy. We have refined this idea [15] by including the basin of 
attraction which determines the number of excitons recombining at the bottom of a given minimum. 
Experimental data confirm a rather universal proportionality between Stokes shift and halfwidth [14] 
which is a persistent feature of both the classical as well as the quantum mechanical treatment of 
the disorder which is here presented for the first time. Surprisingly, the kinetic siinulations showed 
a slight initial downshift of the Stokes shift S with increasing temperature before turning into the 
inverse temperature dependence as expected in equilibrium, Seq = - a 2 / k ~ T .  The lion-inonotonous 
behaviour of the Stokes shift is due to excitons which escape from shallow higher states by thermal 
activation and get trapped in deeper states before recombination. Recent luminescence experiments 
on ultrathin InAs quantum layers are in qualitative agreement [16]. 
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Fig. 6: Experimental micro-PL, PL,  and PLE spectra of 
a 3.5 nm thick AlGaAs quantum well a t  T = 5 K (top) 

compared with a micro-PL simulation (bottom). 

With a slight modification of the source term in the kinetic equation 

Go = 10 yo 6r(& - f i u e x c )  (18) 

we are able to simulate photoluminescence excitation (PLE) spectra as well. The delta function with 
subscript r is understood to describe the finite spectral range of the excitation, containing the spectral 
resolution as d l  as the homogeneous line width. The luminescence is now calculated and plotted 
as a function of the excitation energy hue,, with the detection energy held fixed (arrow in Fig. 5 ) .  
At energies above the "relaxation mobility edge" OD and PLE agree fairly well, but below there is a 
significant drop in the PLE. Here, the excitation cannot be transfered easily from the excited states 
to the detection states within the exciton lifetime. The huge peak at ~LC?,,, = (not plotted in 
the Figure) is due to states which are resonantly excited and emitting, it is nothing else than resonant 
Rayleigh scattering via disorder in the present exciton system [17]. 

SPATIALLY RESOLVED LUMINESCENCE 

In the numerical solution of the COM Schrodinger equation, the available simulation size is restricted 
by computer memory, and typically a grid of 100 x 100 discrete space points can be handled. Con- 
sequently, only a limited number of disorder eigenstates with large optical rate exists there, and the 
calculated optical spectra consist of seperate lines. Only after averaging the spectra over a number 
of different realizations smooth curves evolve as seen in common optical experiments. However, there 
has been recently an increasing interest in spatially resolved optical methods which allows to look at  
the exciton states individually. Scanning the sample surface with a glas fiber tip in near-field geom- 
etry is one of the possibilities. It has been demonstrated that the standard PL lineshape is nothing 
else than the envelope of many distinct lines related to localized exciton states [18, 191. 

We concentrate here on the so-called micro-photoluminescence (micro-PL) which use5 a microscop to 
focus the optical excitation and/or detection on the sample surface. Although iti spatial reqolution 
is typically of the order of 1 pm only, it gives a reproducible "spiky" spectrum where eveiy peak can 
be related to an exciton COM eigenstate. Our numerical simulation without subsequent averaging 
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is therefore well adopted t o  this situation. In Fig. 6 ( top)  we reproduce a measurement of micro- 
P L  in comparison with a large-focus PL [20].  The simulated micro-PL spectra (bot tom)  has been 
generated using parameters relevant t o  the  experiment. A closer look on t h e  spike distribution in 
the  experiment as well as in the  calculation shows a distinct dependence on energy: Whereas in t h e  
low-energy tail a few spikes with large weight dominate, the  spikes become more frequent but  less 
strong in  t h e  upper par t  of t h e  spectra. We relate this t o  the  quantum-mechanical nature  of the  
underlying disorder eigenstates: There are only a few states in  t h e  tail which, however, are  mostly 
local ground s ta tes  exhibiting a relatively large optical matr ix  element. T h e  increasing nuniber of 
states towards t h e  line center is counterbalanced by their small matr ix  elements (see Fig. 3). Due 
t o  this energy dependence of t h e  spike structure it is not easy t o  extract something like a n  ”average 
number of radiative states per uni t  area”. However, a comparison with detailed calculations can give 
access t o  t h e  distribution of localized exciton states. Even more information can be extracted if a 
statistical analysis of the  energetic distances between spikes is carried out .  Within further work, we 
will relate these findings t o  general theorems on level distance distributions in  quantized systems. 
T h e  exciton states in semiconductor nanostructures with disorder could provide a new example of 
this actual topic. 
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