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Abstract: We examine quantum decay of localized vibrations in anharmonic crystal 
lattice. The theory which describes two-phonon anharmonic relaxation can be ap- 
plied both to local modes associated with substitutional impurity and to intrinsic 
local modes (ILM) in perfect lattices. It is found that for sufficiently high initial ex- 
citations relaxation of vibrations is non-exponential, it demonstrates explosion-like 
behavior a t  specific stages of evolution. The course of the relaxation is determined 
by the initial value of energy, temperature, direction of vibrations. As an example 
we present the results of calculations of the relaxation of an odd local (impurity) 
mode in a simple cubic lattice and discuss the influence of quantum fluctuations on 
the stability of the ILM in one-dimensional monatomic chain. 

INTRODUCTION 

The localization and energy transport in nonlinear systems have received much attention recently. 
Numerical techniques play an essential role in the investigation of anharmonic discrete lattices, allow- 
ing the variation of model parameters and the observation of different properties. The existence of 
stationary localized vibrations in a perfect chain [l, 2, 3, 4, 51 is of particular interest as i t  links local 
lattice dynamics with physics of solitons. 

So far the research of strong anharmonic effects in lattice dynamics as well as molecular dynamics 
simulations of the kinetics of the decay of vibrational excitations [6] has been carried out within the 
frame of classical mechanics. However, the account of quantum effects may be important, as it leads 
to creation of new channels in the decay. In this context the problem of strong local vibration is also 
of significant interest, it gives an example when anharmonic and quantum effects can be described 
analitycally with the application of nonperturbative theory. One of the results of the corresponding 
theory [8, 9, 101 is an explosion-like release of energy by the local vibration with the emission of a 
burst of phonons. This release takes place if the energy of the local mode approaches some definite 
critical values. Such a behaviour is new for vibrational systems and it is a consequence of a mutual 
interplay between anharmonic and quantum effects. 

The method used in [8, 101 is based on the assumption that a local mode is strongly excited 
initially and it can be considered classically. Phonons are supposed to be not excited (or to  be in 
thermal equilibrum). According to  classical mechanics, the state with non-excited phonons is stable, 
since for the phonon coordinates qi at  rest (qi = 0) the anharmonic interaction is turned off. Quantum 
fluctuations, coming from zero-point vibrations, turn on the interaction and result the relaxation of 
the mode. We must note, however, that the standard quantum theory, based on the description of 
anharmonic interaction as a small perturbation [l], cannot be used for the obtaining of the solution 
to the problem of relaxation, because the interaction is not weak (due to the strong excitation of the 
local mode). 
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GENERAL THEORY 

Let us consider a local vibration anharmonically interacting with phonons. The peculiarity of the 
problem is that the strong local vibration causes periodic time-dependence of the local force constants 
and therefore of the zero-point energy of the phonon system. This time-dependence results the 
generation of phonons. The mechanism of this process has an analogy with the black hole emission 
mechanism proposed by Hawking [ll] and with Unruh radiation [14]. In all these cases the time 
dependence of the zero-point energy causes the transformation of the initial creation and destruction 
operators in time [12, 131. Namely, according to Hawking [ll] 

where & and 6 are initial (incoming) and final (outgoing) time-dependent destruction operators for 
photons. It means that when there are no incoming particles the number operator of the i-th outgoing 
state is 

N, =< 01 6: 6, 10 >= c I pz3 12 , (2) 
3 

i.e. the number of particles created and emitted in a gravitational collapse can be determined calcu- 
lating the coefficients pz,. There exist several situations in quantum field theory where the phenomena 
similar to black hole evaporation appear. The most famous are: 

0 Pair production in a static electric field revealed by Heisenberg [21]. Vacuum of quantum field 
theory is unstable against the creation of charged pairs. 

Accelerated systems which become spontaneously excited in Minkowski - space and accelerated 
mirrors. 

It is also known that the rate of emission of the black hole is very high near the end of its life. As 
a black hole emits radiation it loses mass. This in turn increase the rate of emission. Near the end of 
its life about 1030 erg would be released in 0.1 s. So the emitting rate of the black hole grows in time 
and at some critical moment a large amount of energy will be released in very short time (explosion). 
We will point out how the analogy of this dramatic effect appears in the system of phonons in crystal. 

Cubic anharmonic interaction of the local mode with crystalline is the sum of terms N & 2i, Q ( t ) ,  
where Pi and Pi, are the operators of normal coordinates of crystalline phonons, Q(t)  is the time- 
dependent classical amplitude of the local mode. This interaction leads to the following time- 
dependent Hamiltonian of the phonon system: 

(3) 
1 . 2  1 

f i p h ( t )  = - C(Zi + ~ ‘ 2 : )  + -Q(t) E(ei.wei,)&&, . 

Here wi is the frequency of the mode i, (eiurea) = C, ei,ei/,w,,, n = 1,2,  . . . , no, Xi ei,ei,f = d,,,, no 
is the number of configurational coordinates contributing to anharmonic interaction. 

2 2  2 ii’ 

The Hamiltonian (3) can be diagonalized as follows [8]: 

where Slj ( t )  are time-dependent phonon frequencies, and 

are time-dependent destruction operators; expressions for Rj, pij and vij are given in [19]. 
The anharmonic interaction considered causes not only time dependence of phonon frequencies 

but also changes of phonon operators in time. Note that relation ( 5 )  is analogous to the relation 
of Hawking (1) between field operators in different times of gravitationally collapsing star. This is 
why the mechanism of a local mode relaxation is analogous to that of black hole emission: phonons 
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(photons) are generated because the initial zero-point state 10 > is not zeroth state for the time- 
dependent destruction operators 6j; there are phonons with frequencies R j  in 10 > at  the time moment 
t ;  the number of phonons equals Cj Nj(t), where Nj( t )  =< Ol&T(t)bj(t)10 >. 

Energy, which is generated in phonon system at  the time moment t, equals [8, 91: 

(fast oscillating terms are neglected). This energy comes from the local mode: Eph(t) = El(0) - El( t ) ;  
El(t) N w : Q i ( t ) / 2 ,  Q o ( t )  is the mode amplitude, w1 is its frequency. This relation between the energies 
Eph and El gives an equation for El(t). Differentiating (6) and taking into account that dEph = -dEl, 
one obtains &(t)  x -T(t)El(t), where 

stands for the relaxation rate a t  the time moment t (30 = 0 ,  am+’ = q / 2 ) ,  p(w) = -5(G(w)) is the 
phonon density of states (for w > 0), G ( w  - wl )  = G(w)G(w - wl) is the two-phonon Green’s function, 
expression for r k  is given in [9, lo]. The second term in square brackets in (7) is important only if 
the initial energy is close to critical point. When deriving expression (7) it was taken into account 
that for El M Ek 

(8) 
1 - @(Ek - El(t))e-2rkt 

Ek - El(t) Yk 

ODD LOCAL MODE IN A CUBIC LATTICE 

To illustrate the theory we calculate the relaxation of the local mode associated with a light substi- 
tutional impurity atom in a simple cubic lattice. Within the approximation of the nearest neighbours 
interaction the potential operator has the form 

where a = z, y, z are the directions of crystal axes, 6 = (n,, nu, n,) is the vector of the lattice sites, 
6, is the vector of the site nearest to 6 in a direction, 

R& = J(ROn, + ?,&)* + ?& - P;& (10) 

is the operator of distance between the nearest neighbours in the a-direction, Rod, is the distance 
between the nearest neigbour sites, 908, = qpa - qpdQ,  qp is the @-component of the displacement 
vector & of the atom 6, ?;, = ?& + P i j j ,  + ?zjj, . By expanding $’ in the power series of displacement 
operators one gets 

(11) 
a.8 

where 

m 

m 

1 
V18, = c Rb”,;’K,$y)(m - 2)(m - 4 ) .  

m 
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Fig. 1. Displacements which contribute to the relaxation of the central atom. The 
central (impurity) atom and its six nearest neighbours are shown. 

The potential considered does not take account of the covalent interaction which leads to the 
chemical bonding. This (covalent) interaction can, however, be easily included in calculations by 
introducing additional terms of the type Visa and V&. 

We make calculations for a local mode associated with a vibration of a light substitutional impurity 
atom situated at the origin of our reference frame . In this case the solutions of classical equations 
of motion, corresponding to  the local mode, satisfy the conditions for the mode localized on the 
impurity atom at the site n = 0. As a consequence, all mathematical calculations are simplified, since 
one can neglect contribitions of other atoms to the classical motion. This allows us to neglect also the 
variations of the frequency of the local mode and of the constants of anharmonic interaction which 
are caused by the variation of the amplitude of the local mode. 

Altogether there are 21 operators of Cartesian coordinates (three for each of 7 atoms includung 
the central atom and 6 its nearest neighbours) which contribute to the relaxation of the local mode 
in this approximation. Therefore, the interaction Hamiltonian is 

The matrix 
in (11) with 

where Cp are Cartesian amplitudes of the local mode; n denotes the numbers of the central atom and 
its nearest neighbours and the Cartesian components of their coordinates. We choose (see Fig. 1): 

is determined by the coefficients of the quadratic operators of cubic anharmonicity 

Qii, = cp + 8ps - 4psn , (14) 

61 = 20, 62 = $0, 63 = 20, 44 = i l z >  45 = $1,, 66 = 2Ic, 67 = 2-1,> G E  = $-l=, G9 = &-15, 410 = $ly> 

411 =z Zl, ,  q12 = zly> 413 = o-ly, 414 = 2-ly> 415 = 2-ly, 816 = zl,, 917 = i l z ,  618 = 6lz, 819 = 2-lz, 
6 . .  6 . .  . . . .  

820 = ?-Iz, 421 = + I z ;  c = Jm-. 
The matrix w = {V3nn’}/V30 for three directions in the crystal lattice is given below (V30 = I&,; 
The operator H’ with the given matrices w can be diagonalized analitycally. Since the correspond- 

ing final analitycal expressions for the eigenvalues are complicated, we restrict ourselves in giving their 
Ron-zero values for some chosen parameters K (see Table 3 and Table 2). 

K, = 1 + vii~,/v30). 

0 -Mi Mi -Mz M 2  - M 3  M 3  

-Mi Mi 0 0 0 0 0 
A l l  0 -Mi 0 0 0 0 
-Mz 0 0 M4 0 0 0 
MZ 0 0 0 -M4 0 0 

\ M l  0 0 0 0 0 -M4 
-1kq 0 0 0 0 M4 0 
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k2.2361 
f 1 . 2 4 2 2  

1199 

f2.1830 f1.7728 
h1.6619 f1.0431 

K O 0  

M I =  0 1 0  

0 0 1  

K . 1 0  

M5= 1 1 0  

( 
( 0 0 1  

k1.2256 
f0.8570 

Mg = 

k0.5774 
k0.3825 

' 0 -M5 M5 -M6 Ms -M7 M7 

-Mi M5 0 0 0 0 0 
MI 0 -M5 0 0 0 0 

-MZ 0 0 M5 0 0 0 
M,T 0 0 0 -M5 0 0 

, M , T  0 0 0 0 0 -M8 

-MT O O O O M8 O 

k0.8570 
f0.7071 

' 0 -M9 M9 -M10 MlO --MI1 Ml1 
-Mg Mg 0 0 0 0 0 
Mg 0 -Mg 0 0 0 0 

-MA 0 0 Mg 0 0 0 
M& 0 0 0 -Mg 0 0 

- M A  0 0 0 0 Mg 0 
\MA 0 0 0 0 0 -Mg 

h0.1377 
f0.1106 

1 0 0  0 1 0  

1 1 0  1 0 0  

K l l  1 1 0  1 1 0  

1 0 1  

TABLE 1. Nonzeroth Eigenvalues of the 
Matrices w,  K = 5. 

f0.5813 

TABLE 2. Nonzeroth Eigenvalues of the 
Matrices w,  IC = 1.5. 

h3.1948 I f3.8230 I h3.9880 
[loo] I [110] I [lll] 

I k1.1114 I 50.5774 I 

To proceed further we must know the functions of the local densities of states pm(w).  To find these 
functions one should specify the parameters for our lattice and the substitutional impurity atom. For 
qualitative estimations, however, it is possible to involve suitable standard expressions for density 
functions which in many cases give good approximation. 

For qualitative estimations we use the following density functions: 

p m ( w )  = & m ~ a ( u )  + X o m ~ o ( u )  i (15) 

where 
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is the density function for acoustic phonons and 
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po(w) = ( 8 / ~ ( ~ 0 2  - wol)’)\/(wo2 - W ) ( W  - w o l ) ,  wo1 I w I w o 2 .  (17) 

is the density function for optical phonons, A,, and A,, stand for the corresponding contribution of 
the phonon bands to the rn - t h  density of state, A,, + A,, = 1, w,, w01 and w02 are the limiting 
phonon frequencies for acoustic and optical bands respectively. 

Formulas (16) and (17) make a correct account of the Van Hove singularities in the densit,y of slates 
of iihonons in the crystal lattice. We should underline, that  the two-phonon Green’s functions G,,(w) 
which are relevant t o  our process, are less sensitive 
Green’s function Gm(w). 

7 0 0 4  
600; 

t 5001 400, 

,001 
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00 1000 2 0 0 0  3000 4000 5000  

t 

Fig. 2. Relaxation of the energy of the local mode 
in directions [loo] - thick line, [110] - thin line, [ I l l ]  - 
dotted line. K = 5, El(0) = 1800. 

t 

Fig. 4 Relaxation of the energy of the local mode in 
directions [loo] - thick line, [110] - thin line, [lll] - 
dotted line. K = 5, El(0) = 1800. 

to details of local dynamics than the one-phonon 

L 
0 1000 2 0 0 0  3 0 0 0  4000 5 0 0 0  6 0 0 0  

t 

Fig. 3 Rate of the relaxation of the local mode in 
directions [loo] - thick line, [I101 - thin line, [111] - 
dotted line. K = 5, El(0) = 1800. 
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Fig. 5 Relaxation of the energy of the local mode in 
direction [lll], T = 0 - thick line, T = 0.85 - thin 
dotted line. K = 5, El(0) = 700. 

In Figs. 2-5 the critical behaviour of the rate of relaxation of a strongly excited local mode is shown. 
To simplify calculations we chose a system of units where A = k = 1. On the plots time is measured 
in units wl l ,  energy is given in units of vibrational quanta w,, K is a parameter of interaction. 

The time evolution of the local vibration is illustrated in Figs. 2, 4, 5. The rate of the decay is 
shown in Fig. 3. As can be seen, the process of relaxation is determined by the set of parameters 
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for interaction coefficients and by the initial energy of the excitation of vibration. Depending on the 
initial conditions, the most stable vibrations can be either in [loo] or in [lll] direction. This effect of 
anisotropic relaxation is specific for the mechanism described. 

In Figs. 2, 3 the initial energy (El(0) = 700) and the critical values for directions [110] and [lll] 
are close. Therefore, the vibration in [loo] is more stable. The situation is just the opposite in Fig. 4 
(El(0) = 1800), the lifetime of the vibrations in [loo] and [110] is much shorter than that of the 
vibration in [lll] direction. 

In Fig. 5 a comparative behaviour of relaxation for two temperatures is shown. Generally, for 
higher temperatures the damping of the local vibration is faster. 

Finally we should pay attention to  the following features of the described process of generation of 
phonon bursts by strong local vibration: 

1. A remarkable time delay between the excitation of the local vibration moment and the phonon 
burst, generated by this vibration; this delay may be of hundreds or thousands of vibrational 
periods, see Fig. 6 - relaxation in direction [lll]. 

2. Quasimonochromatic spectrum of phonons, generated in the burst. 

3. Dependence on the direction of vibration. Separate calculations should be carried out for each 
type of the crystal1 lattice with a correct account of all possible contributions from vibrations 
of atoms. 

These effects may be used for the experimental observation of the process. 

CONCLUSION 

We showed that quantum (and thermal) effects lead to the creation of extra channels in the decay 
of a strong local vibration (intrinsic or associated with an impurity) with the time-dependence being 
strongly nonexponetial. At very large energies the rate of the decay is relatively low. It increases 
during the course of the relaxation, a t  critical points it gets extremely high values. Then the rate 
decreases and after that increases again until the energy reaches next critical point. The energy 
of the local mode drops in a short time at each critical point and a burst of quasimonochromatic 
phonons is generated. The relaxation rate is higher for higher temperatures, although the values of 
critical energies do not depend on temperature. We also showed that the law of relaxation depends 
strongly on the directions of vibration and its behaviour is different for different initial energies. Strong 
dependence of the relaxation on the directions of vibration obtained for cubic crystals is remarkable, 
since in the case of the existence of chemical bonds the most sta,ble are vibrations in the direction of 
the bonds. This effect may have an important value for chemical reactions and for the mechanism of 
defects formation in solids 

It follows from formulae (7)  and (8) that the damping rate y of the local mode is strongly enhanced 
(diverges in our approximation as N It - t k  I-’/’) if the mode energy approaches (at t = tk) one of the 
critical energies Ek. This enhancement of y is associated with the generation of quasimonochromatic 
phonons. These phonons are emitted in pairs: one phonon with the frequency Wk and another with the 
frequency (q - wk). As a result the decay of the strongly excited local mode is highly non-exponential: 
it has step-wise jumps near critical energies. 

At a final stage of decay the relaxation becomes exponential, i.e. the rate of decay is constant. In 
weak coupling limit the theory presented also gives the constant rate of decay. This is similar to the 
result given by perturbation theory [20] and to the numerical simulations [6] of classical anharmonic 
chain. 

For experimental observation of the relaxation jumps both, quasimonochromatic spectrum of gen- 
erated phonons and the time delay between creation of the strong vibration and the jumps can be 
used. Strong local vibrations can be excited e.g. by light or by high energy particles. Excitation by 
light takes place e.g. in luminescence centers in ionic crystals with small quantum yield of emission; 
here, due to the nonradiative transitions, the electronic excitation is abruptly transformed to the 
local vibrations. High energy particles create in crystals focusons which, in turn, efficiently pass their 
energy to impurities by excitation of their vibrations. 
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