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Abstract: A developing area of research concerns a technique for 
extracting quantum mechanically valid properties from X-ray diffraction 
experiments. Quantum mechanics and crystallography are joined 
through the fact that the electron distributions around atoms are the 
source of X-ray diffraction and electron density distributions are 
observables that lend themselves readily to quantum mechanical 
description. Direct contact with the X-ray diffraction data is made by 
equating the structure factor magnitudes, which are readily obtained 
from the measured X-ray diffraction intensities with the magnitudes of 
Fourier transforms of the quantum mechanical description of the 
electron distribution. The article concerns a further discussion of 
quantum crystallography and its implications. To create a quantum 
mechanical model, crystallographic information in the form of atomic 
positions is used. Since quantum crystallography is applicable to very 
large structures, methods for handling very large structures are 
described. 

INTRODUCTION 

This article concerns some new and developing approaches to the investigation of 
molecular structure and properties by both theoretical and experimental means. The 
subject to be discussed is the developing field of quantum crystallography (QCr). QCr has 
as its objectives insights into the structure and physical properties of crystalline 
substances that extend those of current practice. The methodology is in place and it has 
as its basis the intimate combining of crystallographic data and quantum mechanical 
models in such a way that wave functions can be obtained that are consistent with the 
crystallographic data (ref. 1). This lends itself readily to the calculation of electron density 
distributions, atomic charges, molecular energies and many other properties. 

In the course of developing these aspects of QCr, it was discovered that it would be 
rigorously possible to make ab inifio quantum mechanical calculations on arbitrarily 
complex molecules with an essentially linear increase in computing time as a function of 
complexity (ref. 2). In fact, when ab initio programs become available on high 
performance parallel computers, the increase in computing time should hardly be noticed 
if the number of parallel nodes is sufficiently large to handle the individual fragments, The 
possibility of making ab initio quantum mechanical calculations on molecules large and 
small, and parts of molecules, greatly facilitates the applications of QCr (Note a). 

*Permanent Address: Geo-Centers, Inc., 1CW3 Indian Head Highway, Fort Washington, MD 20744 
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Some of the aspects of these new opportunities will be illustrated with the use of a 
naturally occurring antibiotic, the hexadecapeptide, leu1 -zervamicin. In the next section, 
structural characteristics of this zervamicin will be described, as well as some special 
properties that derive from its structure and packing that may have relevance to the 
mechanism of ion-transport through membranes. 

BACKGROUND 

Some sample calculations have been made on leu1 -zervamicin, Ac-Leu-Ile-Gln-Iva-Ile- 
Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phol (Aib: a-aminoisobutyric acid; Iva: 
isovaline; Hyp: 4-hydroxyproline; Phol: phenylalininol) (ref. 3). Zervamicin is known to 
transport potassium ions across cell membranes. Its crystal structure indicates it to be a 
helical peptide. This is consistent with experimental observations that helical peptides 
which are ionophores, assemble to form channels so that ions can pass through. 
Questions arise concerning the number of helical peptides required to form a channel, the 
size and shape of the pores and other structural features concerning the packing of the 
helical peptides in a membrane. Clues concerning answers to such questions may come 
from an examination of the packing of the helical molecules in a crystal structure. 

Crystal structure investigations of zervamicin show (refs. 3,5,6), for the type of packing 
found in the crystalline state, that it requires three molecules to form the walls of an ion 
channel. The same molecules form the walls of additional channels. The bent helix that 
forms the structure of the zervamicin molecule has hydrophobic side chains extending 
from the peptide residues on one side of the molecule and on the other side there are 
several polar side chains, e.g., at residues 3, 6, 10 and 13. This is called an amphiphilic 
helix, polar on one side and hydrophobic on the other. One curious feature is the side 
chain of residue 11, glutamine. This side chain is attached to the backbone on the 
hydrophobic side of the molecule, but wraps around in such a fashion that its polar end 
projects into the hydrophilic side of the peptide. 

One of the crystal structure investigations of zervamicin (ref. 3) showed the.side chain of 
glutamine 11 in two different orientations, Fig. 1, i.e., both conformers co-crystallize. 
One orientation closes the channel, and the second opens it. The closed form occurs to 

Fig. 1 Closed and open forms of leu1 -zervamicin. The dark circles indicate 
the atomic positions of the side chains of glutamine 11 in both forms (ref. 3). 

about 80% in the crystal. It was possible to simulate the passage of the K+ ion through the 
channel, In the course of the simulation, it was found that the gate formed by the side- 
chain has to open and then close in order for the K+ ion to proceed through the channel. It 
appears that the packing configuration formed in the crystal requires the gate to open and 
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close each time an ion goes through. Experiment shows (ref. 7 )  that a potential is required 
for the transport of the K+ ions. If the packing in a cell membrane resembles that in the 
crystal, it is conceivable that the zervamicin crystal is suggesting a gating mechanism on 
the level of atomic resolution. 

To illustrate some aspects of quantum crystallography, the nature of the calculations that 
may be applied to the region involving the side chain of glutamine 11 will be described. 

QUANTUM CRYSTALLOGRAPHY 

Quantum crystallography (QCr) concerns the combining of X-ray diffraction data for 
crystals with quantum mechanics with the the objective of obtaining accurate wave 
functions that are consistent with the X-ray data (ref. 1). Quantum mechanics and 
crystallography are readily combined through the fact that the electron distributions around 
atoms are the sources of X-ray scattering and electron density distributions are readily 
described by quantum mechanical models. The manner in which experiment and theory 
are connected is through structure factor magnitudes, quantities that are readily obtained 
from the measured X-ray diffraction intensities, and also obtained from certain Fourier 
transforms of the quantum mechanical description of the electron density distribution. If 
the mode! and the experiment are in agreement, the structure factor magnitudes should be 
the same. The applications of QCr can be carried out in a fashion that assures that this 
agreement will initially be rather close. Adjustments can then be readily carried out. 

One form of the quantum mechanical description of the electron density distribution 
involves molecular orbitals and an associated matrix. This matrix is required to be a 
projector with a normalized trace, which imposes strong constraints on the manner in 
which the final adjustment between theory and experiment may be carried out. The 
method for making the fit to the X-ray data makes use of least-squares calculations for 
which the defining equations are the structure factor equations and the equations that 
arise from the conditions that define a projector matrix with a normalized trace. 
The variables are the elements of the projector matrix. Other parameters such as atomic 
positions can also be refined. The resulting wave functions should provide reliable 
information concerning electron densities, charge distributions, electrostatic potentials and 
other quantities of interest. 

QCr applications are greatly facilitated by having good projector matrices initially 
available. This may be achieved by making purely quantum mechanical calculations and 
extracting projector matrices from them. The fact that computer programs may be limited 
in the complexity of the structures that can be computed at one time does not limit the size 
of a structure for which a projector matrix may be obtained. This is so because it is 
possible to carry out ab initio quantum mechanical calculations for very large structures 
with only a linear increase in time with increase in complexity. As noted previously, when 
computer programs based on molecular orbital methods in quantum mechanics are 
arranged for high performance parallel computers with sufficient nodes, the time increase 
will be essentially unnoticeable. 

The key to performing ab initio calculations for large structures is the concept of the 
fragment calculation. It is based, rigorously, on the observation that overlap integrals 
which enter into the definition of a projector matrix, are very small when atoms are far 
apart. These integrals measure the extent of the overlap of atomic orbitals and at 
approximately a distance of 5 A or somewhat more for first row atoms, for example, they 
are negligible in value. The practical aspect is that structures that are excessively large 
can be divided into fragments for which ab initio calculations are readily feasible. The 
special way in which fragments may be formed and projector matrices may be extracted is 
described in references 1 and 2. 
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Fraament and QCr calculations in the crlutamine 11 reaion 

It is of interest to examine comparable fragments in the vicinity of glutamine 11 for both 
forms of leu1 -zervamicin. One of the virtues of appropriate fragment calculations, applied 
to regions of interest, is that they make it unnecessary to apply the calculations to the 
entire molecule. This is of special value when the molecule is large. If a molecule is small 
enough, then the only valid fragment, based on the diminishing of overlap of atomic 
orbitals with increasing distance, is the moelcule itself. 

As noted earlier, the behavior of the side chain of glutamine 11 in leu1 -zervamicin, having 
both the “open” and “closed conformations in a co-crystallized sample, suggests that it 
may be of interest to examine the glutamine 11 region with the use of quantum 
crystallography. A discussion of the procedure to be followed in making this calculation 
would illustrate a number of new features involved. One feature concerns the fact that 
matrices called kernel matrices RiK,may not only be summed to form R matrices for the 
entire structure, but also the kernel structure factors FhiK may be summed to form the 
structure factors for the total structure Fht. A structure factor is a quantity that may be 
computed by taking a certain Fourier transform of the quantum mechanical description of 
the electron density distribution. It is generally a complex number whose magnitude 
squared is related to the intensity of diffraction of X-rays. 

It is now our intention to illustrate how to compute kernel RiK matrices, obtain from them 
their corresponding partial structure factors FhiK with and without thermal effects and form 
from them total structure factors with and without thermal effects. With this accomplished, it 
is possible to put the experimental and theoretically calculated data on the same scale, 
remove the thermal effects from the experimental data, correct the experimental data for 
systematic errors, estimate the experimental values for the partial structure factors 
associated with glutamine 11 and, finally, perform quantum crystallographic calculations 
on the residue, glutamine 11. 

Calculation of kernel matrices, QK 

R matrices for entire molecules are composed of elements that are linear combinations of 
the products of the coefficients of pairs of orbitals. There are sensible ways of dividing up 

Fig. 2 Schematic diagram of 
two kernel projector matrices. 

the complete matrix into kernel matrices, 
RiK, in such a way that the kernel matrices 
add up to the matrix for the entire molecule. 
As noted, structure factors may be com- 
puted for the RiK. Typical forms for two RiK 
are seen in Fig. 2. The dark squares have 
as elements linear combinations of 
products of orbital coefficients associated 
only with the atoms forming the kernels. 
The gray squares have linear combinations 
of products of coefficients in which one 
coefficient always comes from a neighbor- 
hood orbital and one from a kernel orbital. 
The formula used for the calculation of the 
parlial structure factor, FhiK, from theory is 

hiKT = 2tr[R. IK j = 1  2 E, fh ikaT]  

where 
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and the matrix C has only those elements that belong to the kernel for glutamine 11 , i.e. i = 
11. All elements of C t C  have a weight of one when both orbitals belong to the kernel and 
a weight of 0.5 otherwise. Therefore, the elements in the dark a r e e  of Fig. 2 have a 
weight of one, and the ones in the gray areas have a weight of 0.5. Rj is the jth space 
group operator among n operators and the matrix fhiK has as its elements the 
individual Fourier transforms of the elements of (\lnvt) , , The dimensions for the matrices 
RiK and fhiK in the case that i = l l ,  referring to the matrices for glutamine 11, are 
344 x 344. The symbol 0 implies element by element multiplication of the matrix by 
thermal effects derived from experiment (ref. 1). FhiK is obtained if T is omitted. 

Total structure factors with and without thermal effects 

Having performed the calculation indicated in Eq. ( l ) ,  it is now possible to calculate readily 
FhTQ.M. and FhQ,M., the structure factors for the entire molecule with and without thermal 
effects, respectively, i.e., 

where m is the total number of kernels, Q.M. indicates use of quantum mechanical theory 
and FhQSM, is obtained by omitting the thermal effects from Eq. (1). The experimental 
structure factor magnitudes t Fhexp, I are obtainrid from the experiment only for the entire 
structure and with the thermal effects inherent. For scaling purposes, the IFhex 1 
must therefore be compared with the theoretical data computed with thermal effects. TRe 
experimental structure factor magnitudes are summed, as are the theoretical structure 
factor magnitudes for the same set of h. Scaling is achieved by multiplying each of the 
experimental data by the ratio 

XI h htheor ,112 h I hexp I 

Removal of thermal effects and correction for svstematic errors 

Thermal effects may be removed from the experimental data by use of 

Since the other three quantities are known, Eq. (4) may be used to obtain values for the 
Fhexp. Once the I Fhexpl have been obtained, it is possible to correct them for some types 
of systematic errors that occur as a function of the magnitudes of the 1 Fhexp I and also as a 
function of the scattering angle. 

The corrections for those specific types of scaled systematic errors are made by listing the 
scaled structure factor magnitudes from experiment, corrected for thermal effects, in 
descending order of magnitude and also listing them in the order of increasing 
scattering angle. Both listings are handled similarly. Corresponding to each list of 
experimental structure factor magnitudes is a second list of structure factor magnitudes 
obtained from quantum mechanical theory. These second lists are put in the same order 
as the corresponding lists of the experimental structure factor magnitudes. The 
adjustments for systematic errors are made on the assumption that over a range of a large 
number of structure factor magnitudes, perhaps 50 to 100, the average values of the 
theoretical structure factor magnitudes are correct. The correction procedure then 
becomes an adjustment of the experimental data so that corresponding averages become 
close in value. Simple mathematical techniques are available to effect these corrections. 
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Evaluation of exDerimental partial structure factors for alutamine 1 I 

In order to perform quantum crystallographic calculations for glutamine 1 1 ,  it is necessary 
to have an estimate of the values of the structure factor magnitudes associated with 
glutamine 1 1 .  To achieve this, we use 

where all the quantities are known except the IF! 11 e x p l .  With the values of the 

calculalions for glutamine 1 1 .  
e x p l  available, it is possible to proceed wit h 1  he quantum crystallographic 

Quantum crvstalloaraphic calculations for the residue alutamine 11 

We use 

where 

is the matrix formed by integrating orbital products over all space. The S matrix is 
obtained in practice from the fhi matrix when h = O,O,O. When orbitals are far enough 
apart, the integrals are negligible in value and provide the rational basis for the fragment 
calculations. Comparing Eq. (6) with Eq. (i), we see that 

The virtue of the form in Eq. (6) is that it allows improvements to be made in the quantum 
mechanical model by adjustin the elements of the projector P while preserving the 
projector property, namely Pq= P. The details for performing the computations of 
quantum crystallography are described in a QCr study of maleic anhydride (ref. 8). 
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