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Thermodynamic calculations are successfully used to predict multiphase equilibria 
or to analyse industrial processes. Different models have been used to evaluate the 
thennodynamic behaviour of the solution phases, non-stoichiometric compounds with 
different structures, or phases which present order-disorder transformations. The most 
common models which are used will be briefly described. The mathematical equiva- 
lences between some of them will be emphasized. 

Introduc tion 

In recent years, a great effort was made to represent the thermodynamic properties of solution 
substitutional phases as well as ordered ones. Many models, empirical or derived from statistical thermo- 
dynamics have been published. For solid phases, the models are more and more based on the knowledge of 
the crystal structure. It is not the aim of this contribution to list all of them but to discuss the mathematical 
equivalences which can be observed among certain of them, especially for those which have been applied 
to multcicomponent systems. 

Substitutional Solutions 

Power series expansions have been used to describe the thermodynamic behaviour of substitutional 
solutions by Margules (ref. 1). Since then Redlich and Kister (ref. 2), Esdaile (ref. 3), Sharkey (ref. 4) 
, Bale and Pelton (ref. 5 )  and Tomiska (ref. 6) used different fomulations listed in Table 1. Conversion 
matrices of the coefficients have been established (ref. 7,8). 

Krupkowski's (ref. 9) empirical equation presents a dissymmetry and it is equivalent to Hoch- 
Arpshofen's equation (ref. 10) which related the interaction parameter to the interatomic bonding strength 
with respect to the molar fraction of the component with smaller binding capacity. 

These power series have been extended to multicomponent systems. However, for such systems, 
Hillert (ref. 7) suggested that the following composition variable be used: 

m 

"ij = (1 + (1 - m ) q  - &)/m (1) 

Its advantage is that C vij = 1 whatever the order of the system, and a certain symmetry for the 
j # i  

mole fractions is introduced. 

Instead of using molar fractions as composition variables, volume fractions were employed like 
in the equations suggested by Van Laar (ref. ll), Scatchard-Hamer (ref. 12), Flory-Huggins (ref. 13,14), 
Wohl(ref. 15), and Wilson (ref. 16). 

Van Laar, Scatchard-Hamer and Wohl equations are equivalent analytically as seen in Table I. 
All these equations were used to represent the thermodynamic properties of binary and ternary organic 
mixtures but very seldom for metallic solutions. This is also the case for the Non-Randon Two Liquid 
equation (NRTL) developed by Renon and Prausnitz (ref. 17). 
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450 I. ANSARA 

Table 1 - Analytical Equations used for the Representation of the Excess Gibbs Energies of 
Substitutional Solutions. 

Equation 

Margules 

Redlich - Kieter 

Esdaile 

Sharkey et a1 

Legendre series 

T.A.P. series 

Krupkowski 

Van Laar 

Scatchard - Hamer 

Flory - Huggine 

Wohl 

Wilson 

ezcess fundion Comments 

2i + z j  = 1 

Pn( Legendre polynomials) 
Po = 1 
PI = 2 2 -  1 
Pn(z) = [(2n - 1)(2z - l)/n]Pn-l(z) 
-[(n - l)/nlf'n-z(z) 

equivalent to 
Hoch - Arpshofen equation (10) 

zi = Pizil Cj Pjzj  
pi : constants 
S2I - -0 

$i : volume fraction of i 

qi : e f fedive molar volume of i 
& : molar volume of i 

H,=O 

A variety of empirical equations based on geometrical weighting to describe the thermodynamic 
properties of ternary systems have been developed, for example the equations suggested by Kohler (ref. 18). 
Muggianu (ref. 19), Toop(ref. 20), and Hillert (ref. 7) for multicomponent systems. For a ternary system, 
the excess Gibbs energy can be expressed in a general form as follows: 

(2) Gz6 = Q(GT& + P(GT& + r(G;i)r 
where a, P,  7 and p, q, r are given in Table 2. 

expression: 
Another type of symmetrical equation was suggested by Colinet (ref. 21) which has the following 

Kohler, Muggianu and Colinet'S equations are appropriate if the thermodynamic properties of the 
limiting binary systems are not very different, whereas Toop and &llert's equations, which are asymmetri- 
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Thermodynamic modelling 45 1 

Table 2 - Geometrical-type Equations used for the Representation of the Excess Gibbs Energies of 
Substitutional Solutions. 

r 

Hillert (ref. 7) has shown that Muggianu's equation (ref. 19) and the Redlich-Ester polynomial 
(ref. 2) were equivalent. He also showed that assuming the constituent binary systems to be sub-regular, 
Kohler (ref. 18) and Toop's (ref. 20) equations reduce to a Redlich-Kister type equation but with an extra 
term. 

Very recently, Wang et al. (ref. 22) presented a formalism called the three-factor model generalized 
later as the multi-factor model for ternary systems(ref. 23) , which expresses any excess function, for 
example the excess Gibbs energy, as follows: 

where G; is the value of the excess Gibbs energy of the binary system ij at the composition xi  and x j .  P;"j 
is a number (0 5 P,"j 5 1) which fulfills the following condition xi=, Pipj = 1. 

The geometrical equations described above are compatible with equation 4. Nevertheless, it has 
not yet been applied to multicomponent systems. 

Specific interaction terms, which are in general of the form l l l x ; P ( z ; )  where P ( x ; )  is a polynomial, 
can be added to the excess function in equation 2, the parameters of the polynomial being derived from 
experimental information. 

Power series expansions are derived from statistical thermodynamics if the bonding energies are 
assumed to be independent of composition or to vary linearly, like for instance in the regular solution model 
(ref. 24,25), the central atom theory (ref. 26), the surrounded atom model (ref. 27) or the surrounded ion 
model (ref. 28) which was applied to salt mixtures. 

Different models were used to describe the thermodynamic properties of the liquid phase, the 
quasi-chemical model (ref. 29). the associate model (ref. 30), Kapr-Frohberg (ref. 31) and the ionic 
liquid model (ref. 32). The latter will be described hereunder. 
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452 I. ANSARA 

The basic assumptions of the quasi-chemical model are that every atom has z nearest neighbours 
but the competitive action of different types of atom towards a central atom is taken into account. The 
distribution of the components is calculated using a mass action like expression. As the model takes into 
account interatomic interactions when determining the most probable configuration of the solution, a chem- 
ical ordering effect is thus introduced. This model has been widely used for metallic solutions. It should 
be noted that the configurational entropy derived from this model is equivalent to the one derived from the 
cluster variation method developed by Kikuchi (ref. 33,34) where the distribution variable is a basic cluster 
of lattice points. 

As in that model ordering occurs for a composition equal to 0.5, a modification has been proposed 
by Pelton and Blander (ref. 35) in order to translate the minima in the entropy or enthalpy functions 
at any desired compositon. Furthermore, the modified quasi-chemical model has been extended also to 
multicomponent slag systems. 

Many systems exhibit a very negative deviation from ideality for the enthalpy of formation of liquid 
solutions. A specific model which takes into account the formation of chemical bonding was suggested by 
Dolezalek (ref. 30). The liquid phase is assumed to contain short range order volume elements, called 
associates or complexes, which have a well defined composition. They are formed by reaction between the 
elemental constituents of the phase. Thus, the solution phase will be formed of free atoms and associates, 
the corresponding number of moles being defined as n:, n> and n A , B , .  

Assuming that the associates are formed by the following reaction 

i A + j B + AiBj 

the mole fractions of the various species are defined as 

(5) 

The number of moles of these species can be related to the number of moles of the constituents of 

n B  n A , B ,  
7 x > , B ,  = 

n A  + n B  + n A , B ,  
, x ;  = 

n A  

n A  + n B  + n A , B ,  
x :  = 

n A  + n B  + n A , B ,  

a solution where no association occurs, by the following equations: 

n A  = n; + i s  n * A , B ,  ng = n; + i s  n * A , B ,  (6) 

By combining equations 5 and 6, the following relationships are obtained 

x> = X A - 5 A , B 1 [ X / 1 ( 1 - i - j ) - i ]  

5;  = X B - X A , B , [ X B ( l - i - j ) - j ]  

The corresponding Gibbs energy per mole of atom, G,, is equal to: 

G m  = XA,B,G~" + R T ( X A , B , l n X A , B ,  + x A , l n x A ,  + x B , 1 n x B , )  

+ X A , X B , W A , , B ,  t X A , X A , B , W A , , A , B ,  + Z B , X A , B , W B , , A , B ,  (7) 

The terms W ~ J  are generally regular solution parameters. 

This model has widely been used by several investigators in particular Kehiaian et al. (ref. 36), 
Jordan(ref. 37), Laugier (ref. 38), Sommer (ref. 39), Yu er al. (ref. 40) with some variants concerning 
the formulation of the excess Gibbs energy. It had been applied to describe liquid binary or higher order 
mixtures formed by elements of groups I1 and VI (ref. 37,38,40), or IV and VI (ref. 38). Sommer (ref. 39) 
generalized the model to take into account simultaneously different types of associates. 
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A statistical thermodynamic treatment was performed by K a p r  and Frohberg (ref. 31) to for- 
mulate the activities in silicate melts. The basic assumption is that the mixture is formed of cells which 
contain one oxygen ion surrounded by cations. The mixing between an oxide Mi0 and silica SiOz will then 
involve symmetrical cells of the type MiOMi, SiOSi and MiOSi. Gaye and Welfringer (ref. 41) extended 
this cellular model to multicomponent systems. 
Ordered Phasa 

In the solid state, ordered phases having different structures may exist, for example, in metallic sys- 
tems, the a-CrFe which is formed of five sub-lattices, or the Laves C14, C15 and C36 formed respectively 
by 3,2 and 4 sub-lattices. 

A number of phases which can be described with different sub-lattices is listed in Table 3. Their 
number and the species occupying them is generally obtained from structural information. The Llz and 
CsCLB2 phases tend to disorder for a given temperam and composition ranges. The substitutional solu- 
tion is a limiting case where only a single sub-lattice exists. 

Table 3 : Different types of phases with sub-lattices 

Reciprocal Salt System (At, Bt).(C-, o-)b 
III-V Compound 
Interstitial Solution 

(A"', B"' ) a ( c v ,  Dv)b 
( F e ,  Ni)a(C, N ,  O)b 

Ordered Phase i.e. Llz 
Ordered Phase i.e. BZ 
Ionic Liquid Solution 
Substitutional Solution (Azl B,,C,, .........) 

(A l ,  N i )3 (Al ,  Ni) 
(A l ,  N i ) ( O ,  Ni) 
(Al+3),(O-z,  SiOT4, SiOi), 

These phases can be schematically described as follows: 

( A  Y A  . By; ..,...)P( Ay;By; ......),..,.. 

where the species A', B' .... can be atoms, vacancies, defects, ions .... p, q... are the number of sites. If 
p + q + ... = 1, then the thermodynamic quantities are referred to one mole of sites. 

For each sub-lattice s, the site fraction of the species i is equal to 

nj is the number of species j in sub-lattice s, n' the number of sites in sub-lattice s, and n the total number 
of sites. n' is related ton by n' = p a  n / ( p  + q + ...). 

The sub-lattice model, developed by Hillert and Staffansson (ref. 42) based on Temkin's model for 
ionic solutions (ref. 43) and extended by Sundman and Agren (ref. 44) is very convenient to decribe the 
thermodynamic properties of the ordered phases. The molar Gibbs energy is expressed by the following 
equation: 

(9) G, = G - E z i G r  = GreJ -t Gid + GZa 
i 

where G, is referred to the pure elements in a given physical state at a given temperature and pressure. 
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454 I. ANSARA 

Gibbs energy of conjiguration, GZ 

The term Q: is related to the molar entropy of configuration S r f  . For the general case of a multicom- 
ponent system formed by several sub-lattices, each of them containing j species interchanging randomly, 
the number of permutations is given by the following equation: 

Shmf can then be derived and is equal to 

This equation also applies to a substitutional or associate solutions. The expressions of the config- 
urational entropy can become more and more complicated, as for example in the case where species are 
replaced by clusters, for example in the Cluster Variation Method (ref. 35). In the case of a four-point tetra- 
hedron consided as a basic cluster, for a system of n lattice points, the number of permutations between 
points, pairs and tetrahedrons is equal to: 

Surface of Reference 

The term Qef defines a surface of reference. For a two sub-lattice phase of the type (Avh Bvb),(CY; Bvb)q 
taken as an example, G'"' is equal to 

G'"' = ~ ~ ~ E " G A , c ,  + y h y i j " G ~ , ~ ,  + Y~~Y~"GB,C,  + Y~~Y~~"GB,D,  (13) 

The terms G;,jq represent the Gibbs energy of formation of the "ideal compound". It should be noted 
that in the case of a substitutional solution equation 9 is equal to zero. Some of these compounds may be 
metastable. 

Excess Gibbs Energy GZ 

The excess Gibbs energy G; is equal to 

G? = ?/hYB[YlLA,B:C -k YBLA.B:D] + yi?/E[yhLA:C,D + ?hLB:C,D] 

+Y~Y~Y~YY~~LA,B:c,D (14) 

The terms L , , j : k  and Li :k , l  represent the interaction parameters between the atoms on one sub-lattice 
for a given occupancy of the other, and they can be described by a Redlich-Kister (ref. 2) type polynomial, 
as follows: 

L i , j : k  = y i Y j [ ( Q  + boT + (a1 + h T ) ( y i  - Y j ) ]  (15) 

For ordered compounds exhibiting narrow ranges of non-stoichiometry, like for example the Cscl-B2 
phase which exists in the Al-Ni system, an atom B replaces an atom A on the first sub-lattice, (called 
antistructure by Wagner (ref. 45)), and a defect, in this case a vacancy, occupies the site of a B atom in the 
second sub-lattice. A schematic way of illustrating that phase is the following: 
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In the case of the CsCl-B2 phase, Wagner (ref. 45) expressed the molar Gibbs energy of the phase as 

G, = Gid + GI (16) 

If the number of defects is small compared to the total number of sites, then GI (enthalpy or total 
energy as defined by Wagner) is expressed as a linear function of the number of defects in the different 
sites, as follows: 

where G* is the Gibbs energy of formation of the ideal compound, G2. and G20 are respectively the Gibbs 
energy of formation of an anti-structure and of a vacancy. 

Ansara ec al. (ref. 46) showed that equation 17 is mathematically equivalent to equation 13 and that 
the identification of terms shows that 

The interesting feature resulting from this identification is that the enthalpies of formation of defects 
as defined by Wagner (ref. 4 3 ,  that is substitution of an atom by a vacancy on one sub-lattice and by a 
foreign atom on the other one, are related to the lattice stabilities of hypothetical compounds in the sub- 
lattice model. At present, there is a great lack of information for this type of parameter and evaluations are 
desirable. 

Henig ec al. (ref. 47) introduced extra terms to equation 17 to account for deviations from linearity. 
Krachler et al. (ref. 48) generalized the model by considering substitutional antistructure atoms and va- 
cancies on both sub-lattices. The sites are then equivalent and the number of Gibbs energy of formation 
parameters increases from four to six. The two extra ones are GA:A Go:o which are respectively the Gibbs 
energy of element A in the structure bcc-A2 with respect to a bcc-A2 reference state, and that of the va- 
cancies which can be set to zero. This description is also valid for other types of ordered structures which 
present a range of non-stiochiometry. 

The two sub-lattice model has been applied to more complicated solid phases. For the spinel phases in 
the Mg0-A1203 system where the cations occupy tetrahedral and octahedral sites, Hallstedt (ref. 49) mod- 
elled the phase as (A13+,Mg2+)(A13t,Mg2+)2(02-)4. For semi-conductor compounds like GaAs, Chen ec al. 
(ref. 50) modelled the phase including lattice defects, free electrons and holes as (A,B,B+)(B,A,A-)(D,e)(D,h). 
They also showed that the model is equivalent to the species chemical potential-bond energy model de- 
scribed by Oates ef al. (ref. 51). 

Hillert ec al. (ref. 32) applied the two sub-lattice model for molten solutions which present differ- 
ent tendencies of ionisation. The configurational entropy is based on Temkin's expression. To account 
for off-stoichiometric compositions, Hillert et al. introduce in the anion sub-lattice vacancies and neutral 
species, for example (A)p(B,b,D)Q where A,B,b and 0 are respectively cations, anions, neutral species and 
vacancies. The Gibbs energy per mole of atoms, is expressed as follows: 
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456 I. ANSARA 

ui and uj are the valency of ions i and j. The terms P and Q which are the number of sites on the 
cation and anion sub-lattices, vary with composition in order to always maintain electroneutrality. They are 
respectively equal to C j ( - u j y j )  + yo& and C i ( u i y i ) .  A o G ~ - U g / Y A ~  is the Gibbs energy of formation of 
the compound. 

Hillert et al. (ref, 52) have also shown that this equation is mathematically equivalent to equation 7 
i f j  = 1 with 

X A , B ~  = Y B  XA I = yo XB1 = Y b  
U A  Go" = WA1,BI = Lb,O 

VAWAl ,A,Bl = LB,O VBWBl,A,B, = LB,b  

Liquid silicates were modelled, with this description. For example in the Ca-Fe-0-Si system, 
Selleby (ref. 53) used (Ca2+,FeZt ,Si4+)p(02-,Si0~4-,~,FeO~.~, SiOz)o. 

Modelling of order-disorder transformations. 

The ordered L12 or DOls structures based on an fcc-A1 or hcp-A3 lattice can disorder at a given 
composition or temperature. The Gibbs energy of formation of these phases is expressed as follows 

Several models have been used to describe their thermodynamic properties, for example the Ll2 
phase in the A1-Ni system. Kaufman er al. (ref. 54) used a substitutional model, hence considering only one 
sub-lattice. Jia (ref. 55) described the L12 as two solutions (B)3(Ay;,By;) for X A  < 0.5 and (Ay;,B,;)3(A) 
for X A  > 0.5. The disordered phase was considered to be a separate phase. Ansara er al. (ref. 56) and 
more recently, Dupin et al. (ref. 57) described the Llz  phase as containing both elements in both sub- 
lattices (Ay:, ,By;)3(Av;,By;) but mathematical constraints were establised in order to describe with the 
same equation the disordered state. The cluster variation method, developed by Kikuchi (ref. 33,34), was 
used by Sanchez et al. (ref. 58), Sigli et al. (ref. 59), Carlson et al. (ref. a), Pasture1 er al. (ref. 61), and 
Sluiter er al. (ref. 62), to describe the NiAl and Ni3Al phases, in a tetrahedron or a tetrahedron - octahedron 
approximation. Lennard - Jones, coherent potential approximation or first-principles calculations were used 
to estimate the energy parameters. 

In equation 19, the term Ggd(y ; ,  y y )  can be expressed by equation 13. The molar fractions of the 
various elements x i  are related to the various site fractions of the same elements xi = i y ;  + i y y .  The phase 
disorders when x i  = yi = y i  . To ensure that the disordered state is always possible, constraints have to 
be imposed on the coefficients, and it is sufficient to require that the Gibbs energy should always have an 
extremum, that is dG = 0 when x i  = yi = yy, ,  constraints between the parameters are then obtained (ref. 
57) which have to be fulfilled. 

I I1 

For practical use, it is interesting to consider the disordered state independently from the ordered 
one for a given phase. This is done by splitting the ordering energy into two terms as follows: 

where GKd~*(y; ,  yy ) the Gibbs energy is described by the model 19 and which contains implicitly a contri- 
bution to the disordered state, and G g d i * ( y ]  = x i ,  y y  = x i ) ,  a term which represents the energy contribution 
of the disordered state to the ordered phase. When the site fractions are equal in both sub-lattices, thus 
corresponding to a disordered phase, then equation 20 is equal to zero. Hence, the parameters of both or- 
dered and disordered phases can be evaluated independently. This equation has been implemented in the 
Thermo-Calc package developed by Sundman et al. (ref. 63). 
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Thermodynamic modelling 457 

The two sub-lattice model is not adapted to describe several order-disorder phases based on the 
same lattice which can co-exist as in the Au-Cu system, where two L12 and Llo phases are in equilibrium. 

A four sub-lattice model, suggested by Sundman (ref. 64) allows representation of these phases as 
well as the disordered fcc-A1 phases to be described with the same model 

where the four sites are equivalent.The disordered state is described when the site fractions of the different 
species are the same in the four sub-lattices. If two sub-lattices have the same site fractions, as well as the 
two others but of difennt values, the model describes then the Llo ordering. If three sub-lattices have the 
same site fractions, different from the fourth, then the L12 ordering can be described. This second case will 
be discussed here. 

The Gibbs energy of the ordered phase is expressed by the following equation: 

B B B B  4 4 

G, = c c c c Y11)y~2)Y~)y~)Gi:j:k:i 4- RT c yflnyf 4- yI&[ 'L 4- 'L(y: - yk)] (21) 
i=A j = A  k=A l=A s=l s=l 

The terms Gi:j:k:, relative to the same stoichiometry are identical whatever the occupation of the 
sub-lattice. In addition, the interactions between species in a given sub-lattice are assumed to be indepen- 
dent of the site occupations in the others, and identical in whatever sub-lattice the interaction takes place. 
Noting that yi1)=yi2)=z/{3)=y: and that yj4)= yy, Dupin et al. (ref. 57) have shown that there is a mathemati- 
cal equivalence between the Gibbs energy derived from the four sub-lattice made1 with equation 13 for the 
two sub-lattices. The relationships between the parameters are the following: 

Evaluation of the Daramaters 

By means of optimisation procedures, the coupling of the experimental thermodynamic information 
with phase diagram data can lead to optimal values of the thermodynamic properties of the various phases in 
the system. These procedures use as input data all available experimental information on phase diagram and 
thermodynamic quantities like activities, enthalpies of formation and heat capacities. They are integrated 
in several software packages like BINGSS and TERGSS (ref. 65,66), PARROT (ref. 67), F*A*C*T (ref. 
68) or CHEMSAGE (ref. 69) which are used worldwide and they provide an excellent representation of 
the thermodynamic properties of the various phases of a system and are they consistent with phase diagram 
information. 
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458 1. ANSARA 

Conclusions 

The models described in this contribution have been used with success to describe different types of 
solution or ordered phases. Many of them are used in calculation programs for multicomponent phase 
equilibria, as well as in simulation processes. However there is still a lack of exprimental information on 
multicomponent systems and there is a need on thermodynamic properties for metastable phases. 
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