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Abstract: The energy of sunlight absorbed by an antenna chlorophyll inside a 
thylakoid disc in chloroplast is known to migrate to the reaction center in the form of 
an exciton. At normal temperature both the mechanisms of resonance transfer and 
exciton hopping contribute comparably. 

The finite-temperature theory of excitons in a molecular aggregate is translated in the 
language of solid state physics as the treatment of the exciton in a thermal bath of 
phonons. For the sake of simplicity, the exciton-phonon interaction can be viewed as 
linear in lattice displacements with higher-order terms neglected. In the interaction 
picture, the effects of the thermal bath on the dynamics of the exciton can be 
incorporated into a time-dependent effective potential that involves terms arising 
from the fluctuation of the medium coordinates from their equilibrium values. The 
probability of site-to-site exciton transfer is written as a correlation function whose 
evolution in time can be determined by the cumulant expansion technique. 

The exciton clothed by phonons can be defined in a natural way. This procedure 
leads to coarse-graining, and the correlation function for the coarse-grained exciton is 
defined in terms of the dressed states and the dressed operators. The zeroth-order 
term in the cumulant expansion corresponds to the resonance transfer of the dressed 
exciton while the second- and the higher-order terms lead to an expression for the 
probability of hopping. The transfer probabilities for a clothed exciton is derived 
under the Debye approximation for a cubic lattice. 

These expressions can be used to determine the nearest-neighbour transfer 
probabilities in a reasonably realistic model of the thylakoid disc which in turn can 
be used for a numerical simulation of excitons dynamics. The model aggregate can 
be spatially and orientationally disordered. So the transfer probabilities at different 
sites in different directions are all different which is in sharp contrast with the so- 
called random walk model. In an earlier computer experiment we have shown that if 
all the excitons are considered to be created simultaneously, physical processes 
occurring at widely varying time scales (like exciton creation, exciton transfer, 
exciton decay by fluorescence, exciton trapping, phonon dynamics and electron 
transfers) are found to be time-wise self-consistent with one another. In this work we 
view exciton generation as a continuous process and derive a few analytical results. 
An algorithm for a very realistic numerical simulation of exciton generation and its 
utilization in chloroplast is also presented. 

INTRODUCTION 

We have recently discussed a general treatment of the migration of excitons to traps in a doped 
molecular crystal (refs. 1-3). The formalism can be extended rather straight-forwardly to the 
investigation of exciton diffusion. We follow the philosophy of Simons (ref. 4) that while considering 

651 



652 S. N. D A T A  

the dynamical properties of a species in contact with an external medium whose degrees of freedom are 
at equilibrium, effects of the medium on the species of interest can be incorporated into a time- 
dependent effective potential. This potential appears as an aggregate of the equilibrium average species- 
medium interaction and terms arising from fluctuations in medium's coordinates about their equilibrium 
values. We have also been involved in carrying out numerical simulations of exciton spread in the 
thylakoid disc (refs. 5-7). In this work we describe a systematic procedure for the investigation of 
exciton diffusion in a molecular aggregate like the thylakoid disc. 

THEORY 

The total Hamiltonian of the exciton-phonon system is written as 

where H:x is the pure exciton Hamiltonian, HE,, represents the pure phonon Hamiltonian and Hex.+ 

stands for the interaction between excitons and phonons. Let akp (ak) be the creation (annihilation) 
operator for an exciton of momentum A k. For a truly dilute system like a molecular aggregate in the 
presence of ordinary sunlight the exciton Hamiltonian is adequately described in the one-exciton 
approximation, 

H!x = Eka;ak. 
k 

The Frenkel exciton operator is merely a Fourier transform of the site exciton operator. That is, 

akp = N-"* 'exp(ik.Rj) a: 
i 

(3) 

where N is the total number of sites in the crystal and the sum is over all the site exciton states. The 
exciton Hamiltonian H :x can be written in terms of site exciton operators as 

ra  

A molecular crystal has weak intermolecular forces. So the phonon Hamiltonian can be written in the 
one-phonon approximation, 

where b,' (b,) is the phonon creation (annihilation) operator for the qth phonon mode. The exciton- 
phonon interaction Hamiltonian, Hex-ph, for a molecular crystal is taken to be linear in lattice 
displacements: 

ex-ph = fk+q, qak+,Pak(bq + b- 
k.q 

This yields the following time-dependent interaction (in the interaction picture) 
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If we consider the exciton operators as boson operators we get 

. ex-ph (t) = explitH OPh / A  1 fk+q, q exp[-i(ek - &k+q 1 -k b- ,') 
k,q 

x exp[-itHi,/A]. (8) 

Let us define a time correlation function 

Ut) = <lj  l01(t)O2(0)11j 'R (9) 

where O1 and O2 are suitably chosen operators, 11 > stands for the state vector representing one exciton 
localized in the jth site and R indicates that the expectation value is to be evaluated for the interacting 
system with phonons in thermal equilibrium. An especially useful function T,,(t) can be calculated 
with 0, = ajcmPaj+, and O2 =1: 

rmn(t) = <lj  I < aj+mP(t) aj+n(t)>R llj >. (10) 

In particular, r,,(t) is a direct measure of the probability of exciton propagation over n sites in time t. 

The time-dependent operators can be evaluated by using the identity 

exp(-iHt/h) = exp[-l 1 d.rV(z)] exp[-it(H:x f H: , ) /h ] .  (1 1) 
A 0  

The trace appearing in the 
expansion (ref. 8): 

resulting expression for Tmn(t) can be written in terms of Kubo's cumulant 

where the cumulants K,'s have well-known expressions (refs. 3, 8), p is the density operator (the 
statistical weight) and R indicates phonon coordinates. As the phonons are in thermal equilibrium only 
the even-ordered cumulants contribute. 

The zeroth-order correlation function has an extraordinarily simple appearance, 

T,,(t) = N - 2  exp[-i(k.m - k'.n)] exp[i(Ek - Ekv)t/A]. 
k, k' 

This represents a purely coherent (Frenkel) propagation. 
obtained from the substitution n = m : 

The zeroth-order transfer probability is 

P,(t) = r,,(t) = N - ~  C exp[-i(k - k').m] exp[i(E, - &k')t/h]. (14) 
k. k' 

This is precisely the probability derived by Merrifield (ref. 9). Integrals of the types <1k lK2O1lk9 >, (1, 
IK401 1 k' >, etc. are involved in the higher-order correlation function. Representative diagrams for these 
integrals (one each up to fourth order) are given in Fig. 1. 
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Fig. 1. Diagrammes representing typical (a) zeroth, (b) second and (c) fourth order processes. 

EXCITON DIFFUSION 

The exciton-phonon interaction directly mixes a particular zeroth-order exciton-phonon state with 
similar states of the same number of excitons but a different number of phonons. A set of orthonormal 
final states can be obtained in principle from an infinite order treatment. These perturbed states are 
dressed or clothed exciton states. The clothed exciton correlation function can be easily defined (ref. 3). 
The main physical effect of clothing is that the exciton becomes localized or coarse-grained (ref. lo). 
The coarse-grained exciton can jump from one site to the next. The movement becomes incoherent. 
This can be seen from the expression for the second-order transfer probability. The latter has been found 
to be proportional to time t in both slow exciton limit and slow phonon limit for kBT >> A oD and t >> 
l / oD where oD is the Debye frequency (ref. 3). 

There is no way to achieve the diffusion of a bare or a clothed exciton from the zeroth-order treatment 
unless an exciton .relaxation process is introduced. There are several possible mechanisms for exciton 
relaxation. Merrifield (ref. 11) adopted an empirical value of the exciton relaxation time. A similar 
relaxation time (r,J yields a macroscopic diffusion coefficient for the clothed exciton from the zeroth- 
order transport 

m 

The relaxation time generally decreases as the temperature of the system increases. So D (O) decreases 
with temperature. 

If the temperature is sufficiently high compared to the Debye frequency, the second-order transfer 
probabilities can be approximately written in the general form 

The constant a,  is found to be proportional to temperature T. This probability contributes the second- 
order diffusion coefficient 

m 

that increases linearly with temperature and can be considerably large at a high enough temperature. It 
is easy to get D(2) > D(’) for a sufficiently small qel (wide absorption lines) and in the slow-exciton 

limit with a reasonably strong exciton-phonon coupling. As T decreases, D(2) + 0 and the total 
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diffusion coefficient reduces to the "pure" clothed-exciton diffusion coefficient. Thus the present 
treatment yields the Merrifield transport (refs. 9, 11) for clothed excitons as T + 0 and a primarily 
thermal, diffusive transport at a high enough temperature. 

NUMERICAL SIMULATIONS 

The conditions involved in our investigation of the migration of excitons in a molecular crystal are as 
follows. The excitons may not be produced with equal probability in all the lattice sites. There can be 
more than one trap distributed nonuniformly. The probabilities of nearest-neighbor jumps between two 
hosts, from a host to a trap, and from a trap to a host can all be different. There can be more than one 
type of host molecule and more than one type of trap. Under these constraints the formulae derived from 
the random-walk model of Montroll (ref. 12) or the diffusion model of Pearlstein (ref. 13) cannot be 
utilized. Therefore, we rely on the basic equation of the hopping dynamics of excitons (ref. 10) 

where ns(t) is the probability of finding the exciton at site s at time instant t; the index E varies over the 
unit vectors in the positive and negative directions of x, y, and z axes (or any such independent axes); 
and pos,-tsff is the probability of a jump from site s' to site s" in unit time. The hopping probability can 
be determined rom the expressions (15) through (1 7) in the previous section. For a very small interval 
At (such that p At << 1) we write Eq. (1 8) as d 

This should be modified to accommodate a variety of exciton depleting processes. For example, the 
molecule at site s may be vibronically coupled with a decay process characterized by a rate constant. 
The condition n 2 1 also activates enhancedjluorescence at selected sites. A direct emission requires a 
particular site to be overpopulated. For example, if ns exceeds 2, say, at time instant T', an exciton can 
be assumed lost. A cooperative reaction involves two impurities (if and i") of different types each with a 
population greater than one. We carried out numerical calculation of Eq. (19) for 216 sites in a 6 x 6 ~ 6  
crystal involved in the trivariate process (ref. 6) and found that for a given placement of impurities, the 
total number of simple chemical reactions depends on the initial distribution of excitons. The number of 
reactions decreases when other exciton-depleting processes are switched on. The placement of reaction 
centers is an important factor in determining the number of reactions and how fast these would occur. A 
random initial distribution equilibrates the excitons over all the sites very quickly and results in fewer 
reactions. An increase in the number of reaction centers does not necessarily lead to an increase in the 
total number of reactions: it makes the excitons less available for reactions. A complicated dynamics 
results when different processes such as the enhanced fluorescence, emission, and cooperative processes 
occur together. The cooperative reactions appear to be first-order processes with average rate constants 
of the order of 10' - lo9 s-'. 

We carried out another numerical experiment on the time-wise self-consistency of different physical 
processes involved in the energy transfer in green plant photosynthetic units (ref. 7). It is interesting to 
note the diversified time scales of the physical processes' involved in the energy transport in 
photosynthesis. Photon absorption takes place in the second scale with normal intensity of sunlight on 
the surface of the earth. Electron transfers in the Z-scheme take altogether a few mi!liseconds. 
Fluorescence occurs within a few nanoseconds. Exciton transport occurs in nano- to pico- second range. 
Photon dynamics is a picosecond affair. Our main objective was to investigate whether all these widely 
different time scales are mutually consistent in their operation in the naturally occurring process of 
photosynthesis in green plants. 
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The thylakoid was modelled as a 6 x 6 ~ 6  array of chlorophyll-a with cubic lattice constants a=b=c=20 A 
(Fig. 2). Disorder was introduced by substituting chlorophyll-b molecules for some of the chlorophyll-a 
molecules and by considering that a reaction center occupied a central site in the last xy plane. More 
disorder was brought in by randomly orienting the transition .moments of the chlorophyll molecules. 
The resulting model systems were used in our investigation on exciton generation, transport, decay by 
fluorescence and trapping with all the excitons created by a 20 ms exposure to sunlight at high altitudes. 

We found that the number of excitons generated is influenced by lattice disorders. Disorder also implies 
a greater period for the establishment of an equilibrium distribution. Exciton decay by fluorescence was 
always found to be a monotonic function of time. The energy transfer is adversely affected by a lower 
degree of orientifion in the crystal as evidenced by the increase in the trapping time with disorder (Table 
1). The onset of fluorescence of the host molecules and the trap leads to a drastic reduction in the 
number of trapping. We could also make three specific observations. The first one is that the efficiency 
of exciton utilization varies from 12% for a completely random arrangement of transition dipoles to 46% 
for a perfectly ordered arrangement. The experimentally known efficiency is about 20%. The second 
observation is that the number of excitons trapped varies from 1 to 6. This number tallies with the time 
scale of electron transfer along the Z-scheme that requires at least two excitons to be trapped in about 20 
milliseconds. This clearly indicates that the photon density and the exciton transfer rate are consistent 
with the rates of electron transfers. As the third observation we noted that the trapping rate indicates the 
thylakoid disc to be a considerably ordered system. 

TABLE 1. Total number of excitons trapped. Time (in 
ps) taken for the trapping process is indicated in 
parenthesis. 

Case Study Ordered Crystal Disordered Crystal 
chl-a chl-a+chl-b chl-a chl-a+chl-b 

~~ 

Trapping 13 13 9 8 

Trapping and trap 13 12 8 8 

Trapping, host and 5 6 1 1 

(0.20) (0.28) (0.93) (0.55) 

fluorescence (0.27) (0.17) (0.55) (0.69) 

trap fluorescence (0.05) (0.06) (0.03) (0.04) S 1 U N  l l  
Figure 2 .  Schematic representation of a green 
plant thylakoid disc as an aggregate of 
chlorophyll molecules: (a) disordered 
orientations of (transition) dipoles shown by 
arrows and (b) substitutional disorder. A: 
Chl-a; B: Chl-b; C: reaction center. 

MORE REALISM 

In nature, exciton generation in green leaves is a continuous process. The continuous creation can be 
accommodated in the master equation (1 8) by modifying it into the form 

The general solution for ns(t) is 

0 1998 IUPAC, Pure and Applied Chemistry70,651-657 



Energy transport in the chloroplast 657 

The coefficients Xi,s can be determined by Laplace transfosmation technique. We find 

where 

- 
The effect of randomization may be introduced by using the averages p1 in Fi,s. Then an exact 
analytical expression can be derived for Fi,s for a j n i t e  lattice. The detailed methodology will be 
discussed elsewhere. This approach has two advantages. First, any specific feature of the disordered 
lattice transmits itself directly to the time evolution of the hopping dynamics. Second, one needs to 
compute and store only N numbers in order to calculate the exciton density at any site after any 
arbitrarily large number of time steps. 
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