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Definition of terms relating to the non-ultimate 
mechanical properties of polymers (IUPAC 
Recommendations 1998) 

DEFINITION OF TERMS RELATING TO THE NON-ULTIMATE 
MECHANICAL PROPERTIES OF POLYMERS 

SUMMARY 

The document gives definitions of terms related to the non-ultimate mechanical 
behaviour of polymeric materials, in particular bulk polymers and concentrated solutions 
and their elastic and viscoelastic properties. 

The terms which have been selected are those met in the conventional mechanical 
characterization of isotropic polymeric materials. They have additionally been limited to 
those which can be defined precisely and with mathematical rigour. They are arranged in 
sections dealing with basic definitions of stress and strain, deformations used 
experimentally, stresses observed experimentally, quantities relating stress and 
deformation, linear viscoelastic behaviour, and oscillatory deformations and stresses used 
experimentally for solids. 

An index, an alphabetical list of terms and a glossary of symbols are included for 
ease of reference. 

INTRODUCTION 

This document gives definitions of terms related to the non-ultimate mechanical 
behaviour or mechanical behaviour prior to failure of polymeric materials, in particular bulk 
polymers and concentrated solutions and their elastic and viscoelastic properties. 

The terms are arranged into sections dealing with basic definitions of stress and strain, 
deformations used experimentally, stresses observed experimentally, quantities relating stress and 
deformation, linear viscoelastic behaviour, and oscillatory deformations and stresses used 
experimentally for solids. The terms which have been selected are those met in the conventional 
mechanical characterization of polymeric materials. 

To compile the definitions, a number of sources have been used. A number of the 
definitions were adapted from an International Standards Organization (ISO) manuscript on 
Plastics Vocabulary'. Where possible, the names for properties, their definitions and the symbols 
for linear viscoelastic properties were checked against past compilations of terminolod '. Other 
documents consulted include ASTM publications '-13. 

The document does not deal with the properties of anisotropic materials. This is an 
extensive subject in its own right and the reader is referred to specialized texts 14,15  for 
information. 

In the list of contents, main terms separated by / are alternative names, and terms in 
parentheses give those which are defined in the context of main terms, usually as notes to the 
definitions of main terms, with their names printed in bold type in the main text. 
Multicomponent quantities (vectors, tensors, matrices) are printed in bold type. Names printed in 
italics are defined elsewhere in the document and their definitions can be found by reference to 
the alphabetical list of terms. 
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1. BASIC DEFINITIONS 

In this section, quantities are expressed with respect to rectangular Cartesian 
co-ordinate axes, 0 x 1 ,  0 x 2 ,  0 x 3 ,  except where otherwise stated. The components of a vector V 
are denoted V,, V2, and V3 with respect to these axes. 

1.1 traction 
stress vector 

Recommended symbol: t 

A vector force per unit area on an infinitesimal element of area that has a given normal and is at a 
given point in a body. 

Unit: Pa 

Note 

1. The components o f t  are written as f I ,  f 2 ,  t 3 .  

2. t is sometimes called true stress. The term traction (or stress vector) is preferred to 
avoid confusion with stress tensor (see 1.2 note 5) 

1.2 stress tensor 
stress 

Recommended symbol: 0 

The tensor with components oij which are the components of the traction in the Oxi direction on 
an element of area whose normal is in the Oxj direction. 

Unit: Pa 

Notes 

1. A unit vector area with normal n can be resolved into three smaller areas equal to nl, 
n2, and n3 with normals in the directions of the respective co-ordinate axes. 
Accordingly, each component of the traction on the original area can be considered as 
the sum of components in the same direction on the smaller areas to give 

7 

t ,  = C q j n ,  , i = l ,  2,  3 
/ = I  

2. In usual circumstances, in the absence of body couples, qj = qi 

3. For a homogeneous stress u is the same at all points in a body. 
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4. For an inhomogeneous stress o,, = o,, (XI, x2, x3). 

5. u is a true stress because its components are forces per unit current area (cf. 3,4). 

6. If (313 (= 031) = 0 2 3  (= 0 3 2 )  = 0 3 3  = 0 then the stress is called a plane stress. Plane 
stresses are associated with the deformation of a sheet of material in the plane of the 
sheet. 

1.3 deformation of an elastic solid 

A deformation of an elastic solid through which a mass point of the solid with co-ordinates XI, 
X2, X3 in the undeformed state moves to a point with co-ordinates XI, x2, x3 in the deformed state 
and the deformation is defined by 

x, = x ,  (XI,&, X3) , i =  1 , 2 , 3  

Notes 

1. A homogeneous deformation is one in which the relationships between the co- 
ordinates in the undeformed and deformed states reduce to 

3 

x, = C f j ~ ,  , i = l ,  2, 3 
j = I  

where thef;, are constants. 

2. An inhomogeneous deformation is one in which the incremental changes in the 
undeformed and deformed co-ordinates are related by 

3 

&, =Cf,dXj , i = l ,  2, 3 
J=1 

where f, = axl /dXj  , i, j = 1, 2, 3,  and where the JJ are the functions of the 
coordinates xJ. 

3. TheJj in notes 1 and 2 are deformation gradients. 

1.4 deformation gradient tensor for an elastic solid 

Recommended symbol: F 

The tensor whose components are deformation gradients in an elastic solid. 

Notes 

1. The components of F are denotedJ,. 

2. See 1.3 for the definitions ofJy 

1.5 deformation of a viscoelastic liquid or solid 

A deformation of a viscoelastic liquid or solid through which a mass point of the viscoelastic 
liquid or solid with co-ordinates x;, x i ,  x; at time t' moves to a point with co-ordinates XI, x2, x3 
at timet such that there are functions gi, i = 1,2,3, where 
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Non-ultimate mechanical properties of polymers 709 

Notes 

1. t ’often refers to some past time and t to the present time. 

2. The relationships between the total differentials of the functions gi define how particles 
of the material move relative to each other. Thus, if two particles are at small distances 
dx; , dx; , dx; apart at time f and dxl, d x 2 ,  d x 3  at time t then 

7 7 

i, j = 1,2,3. 

3. The matrix with elements g, is denoted G and the matrix with elements g:, is denoted 
G .  

4. A homogeneous deformation is one in which the functions g, are linear functions of 
the x,, i, j = 1,2,3, As a result, the g,, and G are functions of t only and the equations 
which define the deformation become 

5. Homogeneous deformations are commonly used or assumed in the methods 
employed for characterising the mechanical properties of viscoelastic polymeric liquids 
and solids. 

1.6 deformation gradients in a viscoelastic liquid or solid 

Recommended symbol: J, 

If two mass points of a liquid are at a small distance dx;, dx; , dx; apart at time t’ then the 
deformation gradients are the rates of change of dx; with respect to dx,, i, j = 1,2,3. 

Note 

fi = & ; / a x J ,  i, j = 1, 2, 3 

1.7 deformation gradient tensor for a viscoelastic liquid or solid 

Recommended symbol: F 

The tensor whose components are deformation gradients in a viscoelastic liquid or solid. 

Notes 

1. The components of F are denotedJ, 

2. See 1.6 for the definition ofJ,. 

3. By matrix multiplication, F = (G?-’G where the matrices G and G’are those defined in 
1.5. 
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1.8 strain tensor 

A symmetric tensor that results when a deformation gradient tensor is factorised into a rotation 
tensor followed or preceded by a symmetric tensor 

Notes 

1. A strain tensor is a measure of the relative displacement of the mass points of a body. 

2. The deformation gradient tensor F may be factorised as 
F = R U  = VR,  

where R is an orthogonal matrix representing a rotation and U and V are strain tensors 
which are symmetric. 

3. Alternative strain tensors are often more useful. 
For example: 
theCauchy tensor, C = U2 = FTF 
theGreentensor, B = 3 = FFT 
the Finger tensor, C1 
the Piola tensor, E1 
'T' denotes transpose and ' - 1 '  denotes inverse. B is most usehl for solids and C and C1 
for viscoelastic liquids and solids. 

4. If the 1,3; 3,l; 2,3; 3,2; 3,3 elements of a strain tensor are equal to zero then the 
strain is termed plane strain 

1.9 Cauchy tensor 

Recommended symbol: C 

The strain tensor for a viscoelastic liquid or solid, whose elements are 
ax; ax; 

where x: and x, are co-ordinates of a particle at times t' and t ,  respectively. 

Notes 

1. See 1.5 for the definition of x; and x, 

2. See 1.8 for the definition of a strain tensor. 

1.10 Green tensor 

Recommended symbol: B 

The strain tensor for an elastic solid,whose elements are 
b =x-.- ax dx, 
' k=l ax, ax,' 

where X, and x, are co-ordinates in the undeformed and deformed states, respectively. 
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Notes 

71 1 

1. See 1.3 for the definition of& and Xi 

2. See 1.8 for the definition of a strain tensor 

3. For small strains, B may be expressed by the equation 

B = Z +  2 ~ ,  

where Z is the unit matrix of order three and E is the small-strain tensor. The 
components of E are 

E , = -  - +$) ’ 

with Uk = Xk - &, k = 1,2,3, the displacements due to the deformation. 

1.11 Finger tensor 

Recommended symbol: C’ 

The strain tensor, for a viscoelastic liquid or solid, whose elements are 

where xl’ and x, are co-ordinates of a particle at times t’ and t, respectively. 

Notes 

1. See 1.5 for the definition of xl’ and x,, 

2. See 1.8 for the definition of a strain tensor. 

1.12 rate-of-strain tensor 

Recommended symbol: D 

The time derivative of a strain tensor for a viscoelastic liquid or solid in homogeneous 
deformation at reference time, t. 

Unit: s-‘ 

Notes 

1. For an inhomogeneous deformation, the material derivative has to be used to find time 
derivatives of strain. 

2. D = lim I = lim , where U and V are defined in 1.8, note 2. 
I ’ + l ( Y )  J:) 

3. The elements of D are 
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where the Vk are the components of the velocity v at x and time, t. 

1.13 vorticity tensor 

Recommended symbol: W 

The derivative, for a viscoelastic liquid or solid in homogeneous deformation, of the rotational 
part of the deformation-gradient tensor at reference time, t. 

Unit: s-' 

Notes 

1. For an inhomogeneous deformation the material derivative has to be used. 

, where R is defined in 1.8, note 2. 

3. The dements of Ware 

where the 4 are the components of the velocity v at x and time t .  

1.14 Rivlin-Ericksen tensors 

Recommended symbol: A ,  

The Rivlin-Ericksen tensor of order n, for a viscoelastic liquid or solid in homogeneous 
deformation, is the nth time derivative of the Cauchy strain tensor at reference time, t. 

Unit: s-" 

Notes 

1. For an inhomogeneous deformation the material derivatives have to be used. 

d" C , where C i s  defined in 1.9. 

A0 = I ,  where I is the unit matrix of order three. 

4. Al = @ + p =  2 0 ,  where F is the deformation-gradient tensor (see 1.7), 

, 'T' denotes transpose and D is the rate-of-strain tensor (see 1.12). 

5. In general, A,+, = kn + $A" + AnF , n = 0,1,2, . . . . 

2. DEFORMATIONS USED EXPERIMENTALLY 

All deformations used in conventional measurements of mechanical properties are 
interpreted in terms of homogeneous deformations. 

2.1 general orthogonal homogeneous deformation of an elastic solid 

A deformation, such that a mass point of the solid with co-ordinates XI, X2, X3 in the undeformed 
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Non-ultimate mechanical properties of polymers 713 

state moves to a point with co-ordinates XI, x2, x3 in the deformed state, with 

x, =AJ, , i = 1,2 ,3 ,  

where the h, are constants. 

Notes 

1. The relationships between the xi  and Xi  for orthogonal homogeneous deformations are 
a particular case of the general relationships given in 1.3, provided the deformation 
does not include a rotation and the co-ordinate axes are chosen as the principal 
directions of the deformation. 

2. The h, are effectively deformation gradients, or, for finite deformations, the 
deformation ratios characterising the deformation. 

3. For an incompressible material 

4. The h, are elements of the deformation gradient tensor F (see 1.4) and the resulting 
Cuuchy and Green tensors C and B (see 1.9 and 1.10) are 

2.2 uniaxial deformation of an elastic solid 

An orthogonal, homogeneous deformation in which, say, 

a, = a 
and % = &  

Notes 

1. See 2.1 for the definition of 4, i = 1,2,3 . 

2. For an incompressible material 

2.3 uniaxial deformation ratio 
deformation ratio 

Recommended symbol: A 

The quotient of the length ( I )  of a sample under uniaxial tension or compression and its original 
length (10) 

Notes 

1. In tension h (>1) may be termed the extension ratio. 
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2. In compression h (4) may be termed the compression ratio. 

3. h is equivalent to hl in 2.1 and 2.2. 

2.4 uniaxial strain 
engineering strain 

Recommended symbol: E 

The change in length of a sample in uniaxial tensile or compressive deformation divided by its 
initial length 

E = (11 - lo) / lo 

where lo and I, are, respectively, the initial and final lengths. 

Notes 

1. E =  A - 1, where h is the uniaxial deformation ratio (see 2.3). 

2. E > 0 is referred to as (uniaxial) tensile strain. 

3. E < 0 is referred to as (uniaxial) compressive strain. 

2.5 Hencky strain 

Recommended symbol: EH 

The integral over the total change in length of a sample of the incremental strain in uniaxial 
tensile deformation 

1, .. 

4, 

EH = Id1 I I = ln(l~/l,,) 

10 , I 1  and I are, respectively, the initial, final and instantaneous lengths. 

Notes 

1. See uniaxial strain (2.4). 

2. The same equation can be used to define a quantity EH (< 0) in compression. 

2.6 Poisson’s ratio 

Recommended symbol: p 

In a sample under small uniaxial deformation, the negative quotient of the lateral strain 
the longitudinal strain ( E ~ , , ~ ~ ) I  in the direction of the uniaxial force 

and 

Notes 

1. Lateral strain ~l~~ is the strain normal to the uniaxial deformation. 
E I ~ ~  = h~ - 1 = h3 - 1 (see 2.2 and 2.4). 
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Non-ultimate mechanical properties of polymers 715 

2. For an isotropic, incompressible material, P = 0.5. It should be noted that, in materials 
referred to as incompressible, volume changes do in fact occur in deformation, but they 
may be neglected. 

3. For an anisotropic material, p varies with the direction of the uniaxial deformation. 

4. Poisson’s ratio is also sometimes called the lateral contraction ratio and is 
sometimes used in cases of non-linear deformation. The present definition will not 
apply in such cases. 

2.7 pure shear of an elastic solid 

An orthogonal, homogeneous deformation in which 

a, = A  
A2 = 1ta 
$ = 1  

Note 

See 2.1 for the definition of h, , i = 1,2,3 . 

2.8 simple shear of an elastic solid 

A homogeneous deformation, such that a mass point of the solid with co-ordinates XI, X2, X3 in 
the undeformed state moves to a point with co-ordinate XI, x2, x3 in the deformed state, with 

x3 =x3 
where y is constant. 

Notes 

1. The relationships between the x i  and X,, i = 1,2,3, in simple shear are a particular case 
of the general relationships given in 1.3. 

2. y is known as the shear or shear strain. 

3. The deformation gradient tensor for the simple shear of an elastic solid (see 
1.4) is 
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and the Cuuchy (C) and Green (B) strain tensors (see 1.9 and 1.10) are 

2.9 bulk compression 

Recommended symbol: x 
The fractional decrease in volume (v caused by a hydrostatic pressure 

Note 

Also referred to as volume compression, isotropic compression and bulk 
compressive strain. 

2.10 general homogeneous deformation or flow of a viscoelastic liquid or solid 

A flow or deformation such that a particle of the viscoelastic liquid or solid with co-ordinate 
vector X' at time t' moves to a point with co-ordinate vector X at time t with 

GX'= GX 

where G and G are tensors defining the type of deformation or flow and are functions of time 
only. 

Notes 

1. The definition is equivalent to that given in 1.5 note 4. Accordingly, the elements of 
G and G are denoted g& ( r  ') and gu(t) and those of X' and X ,  (XI, x;, XI ) and (XI, x2, x3). 

2. For an incompressible material 
det G= 1 

where det G is the determinant of G. 

3. Deformations and flows used in conventional measurements of properties of 
viscoelastic liquids and solids are usually interpreted assuming incompressibility. 

2.1 1 homogeneous orthogonal deformation or flow of an incompressible 
viscoelastic liquid or solid 

A deformation or flow, as defined in 2.10, such that 
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Notes 

1. The g,, are defined in 1.5, notes 2 to 4. 

717 

2. If g22 = g33 = l /g j  the elongational deformation or flow is uniaxial. 

3. The Finger strain tensor for an homogeneous orthogonal deformation or flow of 
incompressible, viscoelastic liquid or solid (see 1.11) is 

I o  
2.12 steady uniaxial homogeneous elongational deformation or flow of an incompressible 

viscoelastic liquid or solid 

Uniaxial homogeneous elongational flow in which 

where 7; is a constant, and g22 = g33 =I/& . 
g,l(t> = exp(-Y,,) 

Notes 

1. gl I(t), g22(t) and g33(t) are elements o f  the tensor G defined in 1.5. 

2. From the definition of general homogeneous flow (1.5) (G’X’ = GX = constant) in the 
particular case of steady uniaxial elongationJIow 

xlgl I ( t )  = xI exp( - f E  t )  = constant 

and differentiation with respect to time gives 

Hence, 7; is the elongational or extensional strain rate. 

3. The Finger strain tensor for a steady uniaxial homogeneous elongation deformation or 
flow of an incompressible viscoelastic liquid or solid (see 1.11) is 

exp( 27, ( t  - t’)) 0 0 

exp( -4 ( t  - t’,) 0 ! :  0 exp( -YE (t  - ‘I)) 
c-’ = 

2.13 homogeneous simple shear deformation or flow of an incompressible viscoelastic 
liquid or solid 

A flow or deformation such that 

G = [ i  -’! 
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where y(t) is the shear. 

Notes 

1. The general tensor G is defined in 1.5. 

2. f =  dy(t)/dt is the shear rate. The unit of ,?is s-’. 

3. If y ( t )  = f - t  , where $is a constant, then the flow has a constant 
shear rate and is known as steady (simple) shear flow. 

4. If y ( t )  = yosin 2nvt then the flow is oscillatory (simple) shear flow of frequency v 
and amplitude y o .  The unit of v is Hz. 

5. The Finger strain tensor for simple shearflow (see 1.11) is 

1 +(w - Y( t f ) ) z  
c-’ = y ( t ) - y ( t ’ )  1 

r ( t>  - Y(t’> 

0 0 

l + f Z ( t - t ’ )  f ( t - t ’ )  0 

r 
where y ( t )  - y(t’)  is the amount of shear given to the liquid between the times t’and t. 
For steady simple shear flow C-’ becomes 

0 1  O! 
1 

3. STRESSES OBSERVED EXPERIMENTALLY 

For a given deformation or flow, the resulting stress depends on the material. Howeve; 
the stress tensor (see 1.2) does take particular general forms for experimentally used 
deformations (see section 2). The definitions apply to elastic solids, and viscoelastic liquids and 
solids. 

3.1 stress tensor resulting from an orthogonal deformation or flow 

Recommended symbol: (J 

For an orthogonal deformation or flow the stress tensor is diagonal with 

Unit: Pa 

Notes 

1. See 1.2 for the general definition of 0. 

2. If the strain tensor is diagonal for all time then the stress tensor is diagonal for all time 
for isotropic materials. 
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3. For a uniaxial (orthogonal) deformation or flow (322 = (333. 

4. For a pure shear deformation or flow the stresses ((311, 022, (333) are usually all 
different from each other. 

5. The stress tensor resulting from a pure shear deformation or flow is called a pure 
shear stress. 

3.2 tensile stress 

Recommended symbol: (3 

The component.ol1 of the stress tensor resulting from a tensile uniaxial deformation. 

Unit: Pa 

Notes 

1. The stress tensor for a uniaxial deformation is given in 3.1. 

2. The 0x1 direction is chosen as the direction of the uniaxial deformation. 

3.3 compressive stress 

Recommended symbol: (3 

The component 01 I of the stress tensor resulting from a compressive uniaxial deformation. 

Unit: Pa 

Note 

See notes 1 and 2 of 3.2. 

3.4 nominal stress 
engineering stress 

Recommended symbol: (3 

The force resulting from an applied tensile or compressive uniaxial deformation divided by the 
initial cross-sectional area of the sample normal to the applied deformation. 

Unit: Pa 

Note 

The term engineering or nominal stress is often used in circumstances when the 
deformation of the body is not infinitesimal and its cross-sectional area changes. 

3.5 stress tensor resulting from a simple shear deformation or flow 

Recommended symbol: 0 
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For a simple shear deformation or flow the stress tensor takes the form 

0 a33 

where 0 2 1  is numerically equal to (512. 

IJnit: Pa 

Notes 

1. See 1.2 for the general definition of 0 

2. o,,, i = 1,2,3 are denoted nornial stresses. 

3. (512 is called the shear stress. 

3.6 first normal-stress difference 
first normal-stress function 

Recommended symbol: N I  

The difference between the first two normal stresses (51 I and (522 in simple shear flow 

Unit: Pa 

Notes 

1. See 3.5 for the definition of (51 I and 0 2 2 .  

2 .  For Newtonian liquids (see 4.2 note 3) N I  = 0. 

3.7 second normal-stress difference 
second normal-stress function 

Recommended symbol: N 2  

The difference between the second and third normal-stresses ((522 - (533) in simple shear flow 

Unit: Pa 

Notes 

1. See 3.5 for the definition of (522 and (533 

2. For Newtonian liquids (see 4.2 note 3), N2 = 0. 
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4. QUANTITIES RELATING STRESS AND DEFORMATION 

4.1 constitutive equation for an elastic solid 

An equation relating stress and strain in an elastic solid. 

Notes 

1. For an elastic solid, the constitutive equation may be written 

where B is the Green strain tensor (see 1.10). 
ZI, I,, 1 3  are invariants of B, 
with ZI = Tr(B) 

12 = 1/2 ((Tr(B))’ - Tr(B’)) 
= det(B), 

where ‘Tr’ denotes trace and ‘det’ denotes determinant. (Invariants are independent of 
the co-ordinate axes used and for symmetric tensors there are three independent 
invariants.) 
W is a function of ZI, Zz, and I, and is known as the stored energy function and is the 
increase in energy (stored energy) per unit initial volume due to the deformation. 

2. For small deformations, the constitutive equation may be written 

where G is the shear modulus (see 4.10), E is the small-strain tensor (see 1.10, note 3) 
and 1 is a Lam6 constant 

3. The Lame‘ constant, ( I ) ,  is related to the shear modulus (G) and Young’s modulus (E> 
(see 4.7) by the equation 

1 = G(2G - E)/(E - 3G), 

4. For an incompressible elastic solid, the constitutive equation may be written 

where P is the hydrostatic (or isotropic) pressure, 13 = 1 and W is a function of I I  and 12, 
only. 

5. For small deformations of an incompressible, inelastic solid, the constitutive 
equation may be written 

Q + PI = ~ G E  

4.2 constitutive equation for an incompressible viscoelastic liquid or solid 

An equation relating stress and deformation in an incompressible viscoelastic liquid or solid. 
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Notes 

1. A possible general form of constitutive equation when there is no dependence of stress 
on amount of strain is 

d + PI = f(AI,A2,. . . . ,An) , 

whereA1, A2, . . . . are the Rivlin-Ericksen tensors (see 1.14) 

2. For a non-Newtonian liquid (see note 3), a form of the general constitutive equation 
which may be used is 

where q is the viscosity (see 4.12) and ci and I3 are constants. 

3. A Newtonian liquid is a liquid for which the constitutive equation may be written 

where D is the rate-of-strain tensor (see 1.12). 
constitutive equation are termed non-Newtonian liquids. 

Liquids which do not obey this 

4. For cases where there is a dependence of stress on strain history the following 
constitutive equation may be used, namely 

where C is the Cauchy strain tensor (see 1.9) and R is a function of the invariants Z1, I2 

and 13 of C' and the time interval t-t'. R is formally equivalent to the stored-energy 
function, W, of a solid (see 4.1, note 4). 

4.3 modulus 

Recommended symbols: general M 
in bulk compressive deformation K 
in uniaxial deformation E 
in shear deformation G 

The quotient of stress and strain where the type of stress and strain is defined by the type of 
deformation employed. 

Unit: Pa 

Notes 

1. The detailed definitions of K, E and G are given in 4.5,4.7 and 4.10. 

2. An elastic modulus or modulus of elasticity is a modulus of a body which obeys 
Hooke's law (stress Q strain). 
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Recommended symbols: general C 
in bulk compressive deformation B 
in uniaxial deformation D 
in shear deformation J 

The quotient of strain and stress where the type of strain and stress is defined by the type of 
deformation employed. 

Notes 

1. C = lIM, where Mis modulus (see 4.3). 

2. The detailed definitions of B, D and Jare given in 4.6,4.8 and 4.11. 

4.5 bulk modulus 

Recommended symbol: K 

The quotient of hydrostatic pressure (P)  and bulk compression ( x )  

K = P I X .  

Unit: Pa 

Notes 

1. Also known as bulk compressive modulus. 

2. For the definition of x , see 2.9. 

3. At small deformations, the bulk modulus is related to Young's modulus (E) (see 4.7) by 

K = E / ( 3 ( 1  - 2 ~ ) )  

where p is Poisson S ratio (see 2.6). 

4.6 bulk compliance 

Recommended symbol: B 

The quotient of bulk compression (x)  and hydrostatic pressure (P)  

B = xIP .  

Unit: Pa-' 

Notes 

1. Also known as bulk compressive compliance. 
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2. For the definition of xt see 2.9. 

3. B = 1/K, where K is the bulk modulus (see 4.5) 

4.7 Young’s modulus 

Recommended symbol: E 

The quotient of uniaxial stress (0) and strain (E) in the limit of zero strain 

E = lim (o/E) . 
E+O 

Unit: Pa 

Notes 

1. The stress is a true stress, as in 3.2 and 3.3, and not a nominal stress, as in 3.4. 

2. E is defined in 2.4. 

3. Young’s modulus may be evaluated using tensile or compressive uniaxial deformation 
(see 2.4). If determined using tensile deformation it may be termed tensile modulus. 

4. For non-Hookean materials (see 4.3), the Young’s modulus is sometimes evaluated as: 

(i) the secant modulus - the quotient of stress (0) and strain at some 
nominal strain (E) in which case 

(ii) the tangent modulus - the slope of the stress-strain curve at some 
nominal strain (E’), in which case 

4.8 uniaxial compliance 

Recommended symbol: D 

The quotient of uniaxial strain (E) and uniaxial stress (0) in the limit of zero strain 

D = l i m  ( E / o ) .  
E--fO 

Unit: Pa-’ 

Notes 

1. The stress is a true stress as in 3.2 and 3.3, and not a nominal stress, as in 3.4. 

2. E is defined in 2.4. 

3. Uniaxial compliance may be evaluated using tensile or compressive uniaxial 
deformation (see 2.4). If determined using tensile deformation it may be termed tensile 
compliance. 

4. D = 1/E, where E is Young’s modulus (see 4.7). 
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4.9 extensional viscosity 
elongational viscosity 

Recommended symbol: T)E 

The quotient of the difference between the longitudinal stress (011) and the lateral stress (022) and 
the elongational strain rate (YE ) in steady uniaxial flow 

Unit: Pa s 

Note 

See 3.1 and 2.12 for the definitions of ol 1,022 and YE 

4.10 shear modulus 

Recommended symbol: G 

The quotient of shear stress (012) and shear strain (y) 

Unit: Pa 

Notes 

1. See 2.8 for the definitions of y for an elastic solid and 3.5 for the definition of o l 2 .  

2. The shear modulus is related to Young’s modulus (E) (see 4.7) by the equation 

G = E/(2(1+p)) 

where p is Poisson s ratio (see 2.6). 

3. For elastomers, which are assumed incompressible, the modulus is often evaluated in 
uniaxial tensile or compressive deformation using h - X2 as the strain function (where 
h is the uniaxial deformation ratio (see 2.3)). In the limit of zero deformation the 
shear modulus is evaluated as 

= G (for p = 0.5) , 
E 

d(1-X’) 3 
do - - - 

where o is the tensile or compressive stress (see 3.2 and 3.3). 

4.1 1 shear compliance 

Recommended symbol: J 

The quotient of shear strain (y) and shear stress ((312) 
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Unit: Pa-' 

Notes 

1. See 2.8 for the definition of y for an elastic solid and 3.5 for the definition of 012.. 

2. J =  1/G, where G is the shear modulus (see 4.10). 

4.12 shear viscosity 
coefficient of viscosity 
viscosity 

Recommended symbol: q 

The quotient of shear stress (012) and shear rate (7) in steady, simple shear flow 

Unit: P a s  

Notes 

1. See 3.5 and 2.13 for the definitions of 0 1 2  and 9 

2. For Newtonian liquids (see 4.2 note 3), 0 1 2  is directly proportional to ,f and q is 
constant. 

3. For non-Newtonian liquids (see 4.2 note 3), when 012 is not directly proportional to f 
q varies with?. The value of q evaluated at a given value o f ?  is termed the non- 
Newtonian viscosity. 

4. Some experimental methods, such as capillary flow and flow between parallel plates, 
employ a range of shear rates. The value of q evaluated at some nominal average value 
of f is termed the apparent viscosity and given the symbol'q,. It should be noted 
that apparent viscosity is an imprecisely defined quantity. 

5. Extrapolation of q or qapp for non-Newtonian liquids to zero f gives the zero-shear 
viscosity, which is given the symbol qo. 

6. Extrapolation of q and qapp for non-Newtonian liquids to infinite f gives the infinite- 
shear viscosity, which is given the symbol q, . 

4.13 first normal-stress coefficient 

Recommended symbol: w, 

The quotient of the first normal stress difference ( N I )  and the square of the shear rate (73 in the 
limit of zero shear rate 
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Unit: Pa s2 

Note 

727 

See 3.6 and 2.13 for the definitions of N I  and f 

4.14 second normal-stress coefficient 

Recommended symbol: y2  

The quotient of the second normal stress difference (N2) and the square of the shear rate (7) in 
the limit of zero shear rate 

Unit: Pa s2 

Note 

See 3.7 and 2.13 for the definitions of N2 and f 

5. LINEAR VISCOELASTIC BEHAVIOUR 

5.1 viscoelasticity 

The time-dependent response of a liquid or solid subjected to stress or strain. 

Notes 

1. Both viscous and elastic responses to stress or strain are required for the description of 
viscoelastic behaviour. 

2. Viscoelastic properties are usually measured as responses to an instantaneously applied 
or removed constant stress or strain or a dynamic stress or strain. The latter is 
defined as a sinusoidal stress or strain of small amplitude, which may or may not 
decrease with time. 

5.2 linear viscoelastic behaviour 

The interpretation of the viscoelastic behaviour of a liquid or solid in simple shear or uniaxial 
deformation such that 

where o is the shear stress or uniaxial stress, y is the shear strain or uniaxial strain, and P(D) and 
Q(D) are polynomials in D, where D is the differential'coefficient operator d/dt. 

Notes 

1. In linear viscoelastic behaviour, stress and strain are assumed to be small so that the 
squares and higher powers of o and y may be neglected. 
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2. See 3.5 and 2.13 for the definitions of c and y in simple shear. 

3. See 3.2 and 2.12 for definitions of G and y (YE) in uniaxial deformations. 

4. The polynomials Q(D) and P(D) have the forms: 

Q(D) = a(D+qa). . . . . (D+qJ 
(a polynomial of degree n + 1) 

P(D) = (D+Pa)(D+Pt) . . ( D + P J  
(a polynomial of degree n + 1) 

and 

P(D) = (D+pa)(D+pt) .  . ( D + p , d  
(a polynomial of degree n) 

where 
(i) a is a constant 
(ii) qo 2 0,po > 0 andp,, q, > 0, s = 1, . . ., n. 
(iii) qi<pi<qr+l and qn<p,, (ifp, exists) 
pl and q, are related to relaxation and retardation times, respectively (see 5.6 - 5.9). 

5. If qo= 0, the material is a liquid, otherwise it is a solid. 

6. Given that Q(D) is a polynomial of degree n + 1; if P(D) is also of degree n + 1 the 
material shows instantaneous elasticity; if P(D) is of degree n, the material does not 
show instantaneous elasticity (i.e. elasticity immediately the deformation is applied.) 

7. There are definitions of linear viscoelasticity which use integral equations instead of the 
differential equation in definition 5.2. (See, for example, ref. 11 .) Such definitions 

However, the 
approach in the present document, in terms of differential equations, has the advantage 
that the definitions and descriptions of various viscoelastic properties can be made in 
terms of commonly used mechano-mathematical models (e.g. the Maxwell and Voigt- 
Kelvin models). 

have certain advantages regarding their mathematical generality. 

5.3 Maxwell model 
Maxwell element 

A model of the linear viscoelastic behaviour of a liquid in which 

where a and p are positive constants, D is the differential coefficient operator Udt, and (3 and y 
are the stress and strain in simple shear or uniaxial deformation.. 

Notes 

1. See 5.2 for a discussion of (J and y. 

2. The relationship defining the Maxwell model may be written 

dddt + (P/a)o = (l/a)dy/dt 
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3. Comparison with the general definition of linear viscoelastic behaviour (5.2) shows 
that the polynomials P(D) and Q(D) are of order one, qo=O,po=p/a and a=l/a. Hence, 
a material described by a Maxwell model is a liquid (40 = 0) having instantaneous 
elasticity (P(D) and Q(D) are of the same order ). . 

4. The Maxwell model may be represented by a spring and a dashpot filled with a 
Newtonian liquid in series, in which case l / a  is the spring constant (force = 
l/a).extension) and l /p is the dashpot constant (force = (l/p).rate of extension). 

5.4 Voigt-Kelvin model 
Voigt-Kelvin element 

A model of the linear viscoelastic behaviour of a solid in which 
(J = ( a  + PD)y 

where a and p are positive constants, D is the differential coefficient operator Udt, and (J and y 
are the stresses and strain in simple shear or uniaxial deformation.. 

Notes 

1. The Voigt-Kelvin model is also known as the Voigt model or Voigt element. 

2. See 5.2 for a discussion of (J and y. 

3. The relationship defining the Voigt-Kelvin model may be written 

(J = ay + ap(dy/dt). 

4. Comparison with the general definition of linear viscoelastic behaviour (5.2) shows 
that the polynomial P(D) is of order zero, Q(D) is of order one, aqo = a, and a = p. 
Hence, a material described by the Voigt-Kelvin model is a solid (qo>O) without 
instantaneous elasticity (P(D) is a polynomial of order one less than Q(D)). 

5. The Voigt-Kelvin model may be represented by a spring and a dashpot filled with a 
Newtonian liquid in parallel, in which case a is the spring constant (force = 
a.extension) and p is the dashpot constant (force = p.rate of extension). 

5.5 standard linear viscoelastic solid 

A model of the linear viscoelastic behaviour of a solid in which 

where aI, P I ,  a2 and p 2  are positive constants, D is the differential coefficient operator dldt, and 0 
and y are the stress and strain in simple shear or uniaxial deformation. 

Notes 

1. See 5.2 for a discussion of (3 and y. 

2. The relationship defining the standard linear viscoelastic solid may be written 
a10 + Pl(dddt) = a2y + pz(dy/dt) 

3. Comparison with the general definition of a linear viscoelastic behaviour (5.2) shows 
a = p2/p1 and po = that the polynomial P(D) and Q(D) are of order one, qo = 
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al/az. 
instantaneous elasticity (P(D/ and Q(D) are of the same order). 

Hence, the standard linear viscoelastic solid is a solid (uqo>O) having 

4. The standard linear viscoelastic solid may be represented by: 

(i) a Maxwell model (of spring constant h2 and dashpot constant k2) in parallel with a 

spring (of spring constant hl) in which case a1 = hz, PI = k2, a2 = hlhz and P 2  = 
h 1 k2 + h2k2. 

(ii) a Voigt-Kelvin model (of spring constant h2 and dashpot constant k2) in series with a 
spring (of spring constant hl) in which case aI = hl +hz, P I  = k2, a2 = hlh2 and 0 2  = 

hk2.  

5. The standard linear viscoelastic solid can be used to represent both creep (see 5.9) and 
stress relaxation (see 5.7) in materials in terms of single retardation and relaxation 
times, respectively. 

5.6 relaxation time 

Recommended symbol: t 

A time characterising the response of a viscoelastic liquid or solid to the instantaneous 
application of a constant strain. 

Unit: s 

Notes 

1. The response of a material to the instantaneous application of a constant strain is 
termed stress relaxation (see 5.7). 

2. The relaxation time of a Maxwell element (5.3) is t = l /po = a / P .  

3. The relaxation time of a standard linear viscoelastic solid (5.5) is t = l/po = Pl/al. 

4. Generally, a linear viscoelastic material has a spectrum of relaxation times, which are 
the reciprocals ofpi ,  i = 0, 1, . . . , n in the polynomial P(D) (see 5.2). 

5. The relaxation spectrum (spectrum o f  relaxation times) describing stress relaxation 
in polymers may be considered as arising from a group of Maxwell elements in parallel 
(see 5.7). 

5.7 stress relaxation 

The change in stress with time after the instantaneous application o f  a constant strain. 

Notes 

1. The applied strain is of the form y = 0 for t < 0 and y = yo for t > 0 and is usually a 
uniaxial extension or a simple shear (see 5.2). 

2. For linear viscoelastic behaviour, the stress takes the form 

o(t)  = ( c  + w(tNr0 
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c is a constant that is non-zero if the material has instantaneous elasticity and v(t)is 
the relaxation function. 

3. v(t)has the form 

where the pi  are functions of the p i  and qi of the polynomials P(D) and Q(D) defining 
the linear viscoelastic material (see 5.1). 

4. The relaxation times of the material are l/pi (see 5.6). 

5.8 retardation time 

Recommended symbol: T 

A time characterising the response of a viscoelastic material to the instantaneous application of a 
constant stress. 

Unit: s 

Notes: 

1. The response of a material to the instantaneous application of a constant stress is 
termed creep (see 5.9). 

2. The retardation time of a Voigt-Kelvin element is T = l/qo = pla = (dashpot 
constant)/(spring constant). 

3. The retardation time of a standard linear viscoelastic solid (5.5) is z = l/qo = PzIa2. 

4. Generally, a linear viscoelastic material has a spectrum of retardation times, which are 
reciprocals of qi, i = 0, 1, . . . , n in the polynomial Q(D) (see 5.2). 

5. The retardation spectrum (spectrum of retardation times) describing creep in 
polymers may be considered as arising from a group of Voigt-Kelvin elements in series 
(see 5.9). 

5.9 creep 

The change in strain with time after the instantaneous application of a constant stress. 

Notes 

1. The applied stress is of the form o = 0 for t<O and o = 00 for t>O and is usually a 
uniaxial stress or a simple shear stress (see 5.2). 

2. For linear viscoelastic behaviour, the strain usually takes the form 

a is a constant that is non-zero if the material has instantaneous elasticity and b is a 
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constant that is non-zero if the material is a liquid. ~ ( t )  is the creep function. In 
addition, 

is sometimes called the creep compliance. 

3. The creep function has the form 

I 

where the summation runs from i = 0 to n for a solid and 1 to n for a liquid. The A,  are 
functions of the p l  and qi of the polynomials P(D) and Q(D) defining the linear viscoelastic 
material and the q, are the q1 of the polynomial Q(D) (see 5.1). 

4. The retardation times of the material are l/qi (see 5.8). 

5. Creep is sometimes described in terms of non-linear viscoelastic behaviour, leading, 
for example, to evaluation of recoverable shear and steady-state recoverable shear 
compliance. The definitions of such terms are outside the scope of this document. 

5.10 forced oscillation 

The deformation of a material by the application of a small sinusoidal strain (y) such that 

y = yocos ot 

where yo and o are positive constants. 

Notes 

1. y may be in simple shear (see 2.8 and 2.13) or uniaxial deformation (often denoted E, 

see 2.4). 

2. yo is the strain amplitude. 

3. o is the angular velocity of the circular motion equivalent to a sinusoidal frequency v, 
with o = 2n v. The unit of o is rad s-'. 

4. For linear viscoelastic behaviour, a sinusoidal stress (a) results from the 
sinusoidal strain with 

B = a,cos(or + 6) = aocos 6.  cos at - a,sin 6 9 sin at .  

00 is the stress amplitude. 6 is the phase angle or loss angle between stress and 
strain. 

5. Alternative descriptions of the sinusoidal stress and strain in a viscoelastic material 
under forced oscillations are: 

(i) y = yosin ot o=o,s in(at  + 6) 
= a. sin6. cos ot + 
oo cos 6 . sin at 
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(ii) y = y o  cos(ot-8) 0 = (s0cos cot 
= y o  cos 6 * cos cot + 

y o  sin 6 . sin or 

5.11 loss factor 
loss tangent 

Recommended symbol: tan 6 

The tangent of the phase angle difference (6) between stress and strain during forced oscillations. 

Notes 

1. tan 6 is calculated using 
y = y o  coswr and (3 = oo cos(wt + 8). (see 5.10). 

2. tan 6 is also equal to the ratio of loss to storage modulus (see 5.12 and 5.13). 

3. A plot of tan 6 versus temperature or frequency is known as a loss cuwe. 

5.12 storage modulus 

Recommended symbol: general M' 
in simple shear deformation G' 
in uniaxial deformation E' 

The ratio of the amplitude of the stress in phase with the strain (00 cos 6 )  to the amplitude of the 
strain (yo) in the forced oscillation of a material 

M' = ((30 cos6)lyo. 

Unit: Pa 

Note 

See 5.10 for the definition of a forced oscillation in which y = yo cos cot and 
(3 = o0 cos (or + 6 ) .  

5.13 loss modulus 

Recommended symbols: General M" 
in simple shear deformation G" 
in uniaxial deformation in E" 

The ratio of the amplitude of the stress 90" out of phase with the strain (00 sin 6 )  
to the amplitude of the strain (yo) in the forced oscillation of a material 

M '  = (00 sin &)/yo 

Unit: Pa 
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See 5.10 for the definition of a forced oscillation in which y = yocos a t  and o = oo cos (at  
+ 6). 

5.14 absolute modulus 

Recommended symbols: general lMyl 
in simple shear deformation IG*l 
in uniaxial deformation 1E* I 

The ratio of the amplitude of the stress (00) to the amplitude of the strain (yo) in the forced 
oscillation of a material 

Unit: Pa 

Notes 

1. See 5.10 for the definition of a forced oscillation in which y = yocos a t  
and = 00 cos (a t  + 6).  

2. The absolute modulus is related to the storage modulus (5.12) and the loss modulus 
(5.13) by the relationship 

5.15 complex modulus 

Recommended symbols: general M* 
in simple shear deformation G* 
in uniaxial deformation E* 

The ratio of complex stress (o*) to complex strain (y*) in the forced oscillation of material 

M y  = o*/y* 

Unit: Pa 

Notes 

1. See 5.10 for the definition of a forced oscillation in which y = yocos a t  and 
o = oocos (a t  + 6).  

2. The complex strain y * = yoeiot = yo(cos a t  + i sin a t ) ,  where i = 4-1, so that the 
real part of the complex strain is that actually applied to the material. 

3. The complex stress o* = ooei(otG6) = o,(cos(at + 6 )  + i sin(wt + 6)) ,  so that the real 
part of the complex strain is that actually experienced by the material. 
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4. The complex modulus is related to the storage and loss moduli through the relationships 

5. For linear viscoelastic behaviour interpreted in terms of complex stress and strain (see 
notes 2,3) 

P(D)o* = Q;D)y* 

(see5.2). Furtheras Do* = dd/dr = iwo* and@* = ioy,* 

M* = o*/y* =Q(io)/P(iw) 

5.16 storage compliance 

Recommended symbols: general C' 
in simple shear deformation S 
in uniaxial deformation D' 

The ratio of the amplitude of the strain in phase with the stress (yocos 6) to the amplitude of the 
stress (00) in the forced oscillation of a material 

C' = (yocos 6)hO 

Note 

See 5.10, note 5 for the definition of a forced oscillaation in which 
y = ~ O C O S  (oat - 6) and o = GOCOS mat. 

5.17 loss compliance 

Recommended symbols: general C" 
in simple shear deformation J" 
in uniaxial deformation D " 

The ratio of the amplitude of the strain 90" out of phase with the stress (yosin 6) to the amplitude 
of the stress (00) in the forced oscillation of a material 

C" = (yo s in6) /o0 .  

Note 

See 5.10 for the definition of a forced oscillation in which 
y = yocos(ot - 6) and CT = 00 cos wt. 

5.18 absolute compliance 

Recommended symbols: general IC*l 
in simple shear deformation IJ* I 
in uniaxial deformation ID*] 
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The ratio of the amplitude of the strain (yo) to the amplitude of the stress (GO) in the forced 
oscillation of a material 

Unit: Pa-' 

Notes 

1. See 5.10 note 5 for the definition of a forced oscillation in which 
y = yocos(ot - 6) and G = GOCOS ot. 

2. The absolute compliance is related to the storage compliance (5.16) and the loss 
compliance (5.17) by the relationship 

3. The absolute compliance is the reciprocal of the absolute modulus (5.14). 

5.19 complex compliance 

Recommended symbols: general C* 
in simple shear deformation J* 
in shear deformation D* 

The ratio of complex strain (y*) to complex stress (G*) in the forced oscillation of a material 

c* = y*/o* . 

Notes 

1. See 5.10 for the definition of a forced oscillation in which 
y = yo cos (at  - 6) and G = GO cos ot. 

2. The complex strain y* = yoe' = yo (cos(ot-6) + i sin (at-S)), where i = 4-1, So that 
the real part of the complex strain is that actually experienced by the material. 

3. The complex stress cr* = GOe'Wf = 00 (cos o t  + i sin at), so that the real part of the 
complex stress is that actually applied to the material. 

4. The complex compliance is related to the storage and loss compliances (5.16 and 5.17) 
through the relationships 

c* = */,* = yoe-"/o0 = (y,/oo)(cos6 - i sin6) = C' - i c"  

5. The complex compliance is the reciprocal of the complex modulus 

c* = 1/M* . 
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5.20 dynamic viscosity 

Recommended symbol: 7 ’ 

The ratio of the stress in phase with the rate of strain (oosin 6) to the amplitude of the rate of 
strain (oyo) in the forced oscillation of a material 

q’ = (oosin 6)/(ay0) . 

Unit: Pa s 

Notes 

1. See 5.10, note 5 fort-.: definition of a forced oscillation in which y = y o  s ina t  
ando=o , s in (a t+6) ,  so that j = a y , c o s a t  and o = o , s i n 6 ~ c o s a t + o o c o s 6 ~ s i n w t .  

2. See 5.2, note 6: q’ = M”/a may be used for evaluating the dynamic viscosity. The 
same expression is often used to evaluate the shear viscosity. The latter use of this 
expression is not recommended. 

5.21 out-of-phase viscosity 

Recommended symbol: q ” 

The ratio of the stress 90” out of phase with the rate of strain (oocos 6 )  to the amplitude of the rate 
of strain (oyo) in the forced oscillation of a material 

q” = (oocos b)/(ayo) . 

Unit: P a s  

Notes 

1. See 5.10, note 5 for the definition of a forced oscillation in which y = y o  s ina t  
ando = o,sin(at + 6 ) ,  so that j =  oy, cosat  and 
o = oo sin6 . c o s a ~ +  o, cosb . s ina t .  

2. See 5.22, note 6: q” = M’/a may be used to evaluate the out-of-phase viscosity. 

5.22 complex viscosity 

Recommended symbol: q* 

The ratio of complex stress (o*) to complex rate of strain ( f*) in the forced oscillation of a 
material 

q*=o*/f* . 

Unit: Pa s 

Notes 

1. See 5.10, note 5 for the definition of a forced oscillation in which y = yo sin a t  and o = 
oocos (at + 6 )  and the rate of strain f = a0 cos at. 
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2. The complex rate of strain f* = i wyOe'("' = i my0 (cos wt + i sin a t ) ,  where 
i = 4-1. 

3. The complex stress o* = o0ei(("'+') = GO (cos (wt+6) + i sin (at+@) 

4. The complex viscosity may alternatively be expressed as 

q* = o*/ 3* = (ooeis)/(i wyo) = M*/i w 
where M y  is the complex modulus (see 5.15). 

5. The complex viscosity is related to the dynamic and out-ofphase viscosities through the 
relationships 

q* = o*/ 3* = 00 (cos 6 + i sin 6)/(i wyo) = q '  - i q". 

6. The dynamic and out-of-phase viscosities are related to the storage and loss moduli 
(5.11 and 5.13) by the relationships q* = q' - i q" = MyIi 01 = (M' + i M")/i w, so 
that q f  = M'/w and q" = Mlw. 

6. OSCILLATORY DEFORMATIONS AND STRESSES USED EXPERIMENTALLY 

There are three modes of free and forced oscillatory deformations which are commonly used 
experimentally, torsional oscillations, uniaxial extensional oscillations and flexural 
oscillations. 

The oscillatory deformations and stresses can be used for solids and liquids. However, the 
apparatuses employed to measure them are usually designed for solid materials. In principle, they 
can be modified for use with liquids. 

Analyses of the results obtained depend on the shape of the specimen, yhether or not the 
distribution of mass in the specimen is accounted for and the assumed model used to represent the 
linear viscoelastic properties of the material. The following terms relate to analyses which 
generally assume small deformations, specimens of uniform cross-section, non-distributed mass 
and a Voigt-Kelvin solid (see 5.4). These are the conventional assumptions. 

6.1 free oscillation 

The oscillatory deformation of a material specimen with the motion generated without the 
continuous application of an external force. 

Note 

For any real sample of material the resulting oscillatory deformation is one of decaying 
amplitude. 

6.2 damping curve 

The decfeased deformation of a material specimen versus time when the specimen is subjected to 
a free oscillation. 
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Notes 

1. See 6.1 for the definition of aPee oscillation. 

2.. The term ‘damping curve’ is sometimes used to describe a loss curve (see 5.11). 

3. A dumping curve is usually obtained using a torsion pendulum, involving the measurement 
of decrease of the axial, torsional displacement of a specimen of uniform cross-section of 
known shape, with the torsional displacement initiated using a torsion bar of known moment 
of inertia. 

4. Damping curves are conventionally analysed in terms of the Voigt-Kelvin solid (see 5.4) giving 
a decaying amplitude and a single frequency. 

5. Given the properties of a Voigt-Kelvin solid, a damping curve is described by the equation 

X = Aexp(-Pt).sin(wt-+), 

where Xis the displacement from equilibrium (for torsion X = 8, the angular displacement), t 
is time, A is the amplitude, p is the decay constant (see 6.3), w is the angular velocity 
corresponding to the decayfiequency (see 5.10 and 6.4) and 4 is the phase angle. 

6.3 decay constant 

Recommended symbol: p : 

The exponential coefficient of the time-dependent decay of a damping curve, assuming Voigt- 
Kelvin behaviour 

Unit: s-’ 

Notes 

1. See damping curve (6.2) and the equation therefor (6.2, note 5). 

2. See Voigt-Kelvin solid (5.4). 

3. For small damping, p is related to the loss modulus (M’), see 5.13, through the 
equation 

w is the angular velocity corresponding to the decayfiequency (see 5.10 and 6.4). H 
depends on the cross-sectional shape of the specimen and the type of deformation. (For 
example, for the axial torsion of a circular rod of radius a and length I using a torsion 
pendulum (see 6.2, note 3) with a torsion bar of moment of inertia I 

and M’ z G ,  the loss modulus in simple shear ). 

6.4 decay frequency 

Recommended symbol: v 
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The frequency of a damping curve assuming Voigt-Kelvin behaviour. 

Unit: Hz 
Notes 

1. See damping curve (6.2) and the equation therefor (6.2, note 5). 

2. See Voigt-Kelvin solid (5.4). 

3. t* = oRn, where o is the angular velocity corresponding to v (see 5.10). 

4. Fof small damping, the storage modulus ( M ) ,  see 5.12, may be evaluated from o 
through the equation 

M ’ =  02/H, 

where H i s  discussed in 6.3, note 3. Again, for torsion, M z G’, the storage modulus in 
simple shear. 

6.5 logarithmic decrement 

Recommended symbol: A 

Natural logarithm of the ratio of the displacement of a damping curve separated by one period of 
the displacement. 

Notes 

1. Voigt-Kelvin behaviour (see 5.4) is assumed so that the displacement decays with a 

1 27t 
single period T, where 

T = - = -  
v o  

with v the frequency and o is the angular velocity corresponding to v (see 6.4). 

2. The logarithmic decrement can be used to evaluate the decay constant p (see 6.3). 
From the equation for the damping curve of a Voigt-Kelvin solid (see 6.2, note 5). 

A = In (Xfl/Xn+l) = p(t,,+l- to) = p*T, 

where X, and f, are the displacement and time at a chosen point (usually near a 
maximum) in the n-th period of the decay, and Xntl and t,+l are the corresponding 
displacement and time one period later. 

3. A can also be defined using displacements k periods apart, with 

A = (l/k)ln (Xn/X,,+k). 

4. For small damping, A is related to the loss tangent, tan 6 (see 5.11) by 

tan6=M’YM = 2Plo = 2AlTo = A h  
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(See 6.3 and 6.4 for expressions for M and M"). 

6.6 forced uniaxial extensional oscillations 

The uniaxial extensional deformation of a material specimen of uniform cross-sectional area 
along its long axis by the continuous application of a sinusoidal force of constant amplitude. 

Notes 

1. For a specimen of negligible mass, the linear-viscoelastic interpretation of the resulting 
deformation gives 

(A/L)Q(D)l= P(DZf0 cos a t  

where P(D) and Q(D) are the polynomials in D(=d/dt) characterising the linear- 
viscoelastic behaviour (see 5.2), A is the cross-sectional area of the specimen, L its 
original length, 1 is here the change in length,fo the amplitude of the applied force of 
angular velocity o (see 5.10, note 3) and t the time. 

2. For a Voigt-Kelvin solid (see 5.4), with P(D)=l and Q(D)=a+PD, where a is the spring 
constant and p the dashpot constant, the equation describing the deformation becomes 

(A/L)P(dl/dt) + (A/L)al = fo cos o t  

or, in terms of stress and strain, 
dE 
dt 

a& + p- = Go cosot 

where E = I/L is the uniaxial strain (see 2.4 and 5.10) and GO =fo/A is the amplitude of 
the stress (see 5.10). The solution of the equation is 

,,2 cos(ot - 6 )  = E, cos(ot - 6 )  GO E =  
(a' + , 2 * 2 )  

where 6 is the phase angle (see 5.10) with tan6 = po/a. 

3. From 5.14, the absolute modulus in uniaxial deformation 

where a = E', Po = E" and tan 6 = EYE' equal to the loss tangent (see 5.11). 

4. If one end of the specimen is fixed in position and a mass m is attached to the moving end, the 
linear-viscoelastic interpretation of the resulting deformation gives 

m.P(D)(d21/d?)+(A/L)Q(D)l = P(DSCOS o t  

where the symbols have the same meaning as in note 1. 

5. For a Voigt-Kelvin solid (cf. note 2), the equation in note 4 describing the deformation 
becomes 

m(d21/d?)+(A/L)p(dl/dt)+(A/L)ad = fo.cos o t  

with the solution 
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/ /  1 \ 2  

where tan0 = ( (AP)’(Lm))*w and symbols have the same meaning as in notes 1 
( ( A W m ) )  - w 2  

and 2. 

6. The amplitude of the strain EO is maximal when 

w2 = Aa/(Lm) =a: 

giving the value of the angular velocity (OR) of the resonance fi.eguency of the 
specimen (see 6.12) in forced uniaxial extensional oscillation. 

7. Notes 2 and 5 show that application of a sinusoidal uniaxial force to a Voigt-Kelvin 
solid of negligible mass, with or without added mass, results in an out-of-phase 
sinusoidal uniaxial extensional oscillation of the same frequency. 

6.7 forced flexural oscillation 

The flexural deformation (bending) of a material specimen of uniform cross-sectional area 
perpendicular to its long axis by the continuous application of a sinusoidal force of constant 
amplitude. 

Notes 

1. There are three modes of flexure in common use. 

(i) Application of the flexural force at one end of the specimen with the other 
end clamped. 

(ii) Application of the flexural force at the centre of the specimen with the two 
ends clamped (three-point bending or flexure). 

(iii) Application of the flexural force at the centre of the specimen with the two 
ends resting freely on supports (also known as three-point bending or 
flexure). 

2. For specimens without mass, the linear-viscoelastic interpretation of the resulting 
deformations follows a differential equation of the same form as that for a uniaxial 
extensional forced oscillation (see 6.6, note l), namely 

(HJ/L3)Q(D)y = P(D$cos wt 

where P(D), Q(D),  fo, o and t have the same meaning as for a forced uniaxial 
extensional oscillation (see 6.6, note 1) and H is a constant. The length of the 
specimen is 2L. For mode of flexure (i) H=3, for (ii) H=24 and for (iii) H=6 (see note 
1). J is the second moment of area of the specimen, defined by 
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where dA is an element of the cross-sectional area (A)  of the specimen and q is the 
distance of that element from the neutral axis or plane of the specimen, lying centrally 
in the specimen and defined by points which experience neither compression nor 
extension during the flexure. For a specimen of circular cross-section J=nr2/4, where r 
is the radius, and for one of rectangular cross-section J=4ab3/3, where 2a and 2b are the 
lateral dimensions with flexure along the b dimension. Finally, y is the flexural 
deflection (see 6.9) of the specimen at the point of application of the force, of either the 
end (mode of flexure (i)) or the middle (modes of flexure (ii) and (iii)). 

3. For a Voigt-Kelvin solid, the equation describing the deformation becomes 

(HJ/L3)a*y + (HJ/L3)p(dy/dt) = &OS o t  

with solution 

where 6 is the phase angle with 

equal to the loss tangent (see 5.11). 

4. Unlike the strain in forced uniaxial extensional oscillations, those in forced flexural 
deformations are not homogeneous. In the latter modes of deformation, the strains vary 
from point-to-point in the specimen. Hence, the equation defining the displacement y in 
terms of the amplitude of applied force Cfo) cannot be converted into one defining strain 
in terms of amplitude of stress. 

5. If a mass m is attached to the specimen at the point of application of the force, the 
linear-viscoelastic interpretation of the resulting deformation gives 

m*P(D) (d’yld?) + (HJ/L3)Q(D)y = P(DZf0cos ot 

(cf. 6.6, note 4). 

6. For a Voigt-Kelvin solid (cf. note 3 and 6.6, note 5), the equation describing the 
deformation becomes 

m(d2y/d?)+(HJ/L3)P(dy/dt)+(HJ/L3)a*y =focos o t  

with the solution 

,,* cos(0t - 6) so lm 

y =  ((5&2)2+02($!!)2) 

(HJM L3m))o where tan S = (( HJa/( L3m)) - o2 ) 
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7. Theflexlrral deflection y (see 6.9) is maximal when 

O2 = HJd(L3rn) = O’, 

giving the value of the angular velocity (OR) of the resonance frequency of the 
specimen (see 6.6, note 6) in forced flexural oscillations. 

8. Notes 3 and 6 show that the application of the defined sinusoidal flexural forces (i), (ii) 
and (iii) (note 1) to a Voigt-Kelvin solid of negligible mass, with or without added mass 
at the points of application of the forces, results in out-of-plane sinusoidal flexural 
oscillations of the same frequency. 

6.8 flexural force 

Recommended symbol: fo 
The amplitude of the force applied to a material specimen to cause a forced flexural oscillation. 

Unit: N 

Notes 

1. See 6.7 for the definition and interpretation of forcedflexural oscillation. 

2. A related quantity is the flexural stress which is somewhat arbitrarily defined as the 
amplitude of the stress in the convex, outer surface of a material specimen in forced 
flexural oscillation. 

6.9 flexural deflection 

Recommended symbol: y 

The deflection of a specimen subject to a forced flexural oscillation at the point of application of 
the flexural force. 

Unit: m 

Notes 

1. See 6.7 for the definition and interpretation of forcedflexural oscillations 

2. See 6.8 for the definition offlexural force. 

6.10 flexural modulus 

Recommended symbol: IE*l 

The modulus measured using forced flexural oscillations. 

Unit: Pa 

Notes 

1. See 6.7 for the definition and interpretation of forcedflexural oscillations. 
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2. For a Voig-Kelvin solid (see 5.4) of negligible mass, the absolute modulus can be 
evaluated from the ratio of the flexural force (fo) and the amplitude of the flexural 
deflection @) with 

where YO is the amplitude of thefexural defection (see 6.7, note 3,6.8 and 6.9), 

2 2 IR IE*l = (a2 + p w ) 

(see 5.14 and 6.6, note 3) and the remaining symbols are as defined in 6.7, note 2. 

3. The ratio of the loss to the storage flexural modulus (EYE') is derived from the loss tangent 
(tan 6) of the forcedfexural oscillation with 

tan6 = pwla = EYE' 

(see 5.11 and 6.7, note 3). 

4. The flexural modulus has been given the same symbol as the absolute modulus in uniaxial 
deformation (see 5.14) as it becomes equal to that quantity in the limit of zero amplitudes of 
applied force and deformation. Under real experimental conditions it is often used as an 
approximation to IE*l. 

6.1 1 resonance curve 

Recommended symbol: A(v) 

The curve of the frequency dependence of the amplitude of the displacement of a material 
specimen subject to forced oscillations in the region of a resonance frequency. 

Unit: that of the amplitude A 

Notes 

1. See 6.6 and 6.7 for the description of modes of forced oscillation commonly used. 

2. See 6.12 for the definitior, of resonancefiequency. 

6.12 resonance frequency 

Recommended symbol: VR 

The frequency at a maximum of a resonance curve 

Unit: Hz 

Notes 

1. See 6.11 for the definition of a resonance curve. 

2. Material specimens subject to a forced oscillations (see 6.6 and 6.7) in general have a 
spectrum of resonance frequencies. 
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3. In cases of a single resonancefrequency, the resonancefrequency is proportional to the 
square root of the storage modulus ( M )  of the material (see 5.12). 

4. A material specimen which behaves as a Voigt-Kelvin solid under forced oscillations 
with a mass added at the point of application of the applied oscillatory force has a 
single resonance frequency. 

5.  Under a forced uniaxial extensional oscillation the resonance frequency 

V R  = o x / 2 x =  ( A U ) ' ~ ~ /  2 x  = ( A E J ' I ~ ~ ~  

Lm Lm 

(see 6.6 for the origin of the equation and definitions of symbols). E is the storage 
modulus in uniaxial extension (see 5.12). 

6. Under a forcedflexural oscillation the resonance frequency 

HJE 
v, = w , / 2 a  = 

(see 6.7 for the origin of the equation and the definition of symbols). 

6.13 width of the resonance curve 

Recommended symbol: Av 

The magnitude of the difference in frequency between two points on a resonance curve on either 
side of v~ which have amplitudes equal to (1/.\12)A( VR). 

Unit: Hz 

Notes 

1. For a material specimen which behaves as a Voigt-Kelvin solid under forced uniaxial 
extensional oscillation with mass added at the point of application of the applied 
oscillatory force, Av is proportional to the loss modulus (E") (see 5.13). 

In addition (6.6, note 6), the storage modulus (El) (see 5.12) may be 
evaluated from 

(see 6.6 for the definition of symbols). 

2. For a material specimen which behaves as Voigt-Kelvin solid under forced flexural 
oscillations with added mass at the point of application of the applied oscillatory force, 
Av is proportional to the loss modulus (E") (see 5.13) 
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In addition, the storage modulus (El) (see 5.12) may be evaluated form 

(see 6.7 for the definition of symbols). 

3. For the Voigt-Kelvin behavious specified in notes 1 and 2, the ratio of Av and the 
resonance frequency (VR) is equal to the loss tangent (tan 6). 

Under forced uniaxial extensional oscillation 

-tan6 O R = - -  
E" 

A a  a E' 
Av 

Under forcedflexural oscillation 

(see 5.11 for the definition of tan 6). 
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8. ALPHABETICAL INDEX OF TERMS 

absolute compliance (5.18) 
absolute modulus (5.14) 
angular velocity (of a forced oscillation) (5.10) 
angular velocity of resonance frequency (6.7) 
apparent viscosity (4.12) 

bulk compliance (4.6) 
bulk compression (2.9) 
bulk compressive compliance (4.6) 
bulk compressive modulus (4.5) 
bulk compressive strain (2.9) 
bulk modulus (4.5) 

Cauchy tensor (1 -8, 1.9) 
coefficient of viscosity (4.12) 
complex compliance (5.19) 
complex modulus (5.15) 
complex rate of strain (5.22) 
complex strain (5.15, 5.19) 
complex stress (5.15,5.19,5.22) 
complex viscosity (5.22) 
compliance (4.4) 
compressive strain (2.4) 
compressive stress (3.3) 
constitutive equation for an elastic solid (4.1) 
constitutive equation for an incompressible viscoelastic liquid or solid (4.2) 
creep (5.9) 
creep compliance (5.9) 
creep function (5.9) 

damping curve (6.2) 
dashpot constant (5.3, 5.4) 
decay constant (6.3) 
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decay frequency (6.4) 
deformation gradients in an elastic solid (1.3) 
deformation gradients in a viscoelastic liquid or solid (1.6) 
deformation gradient in the orthogonal deformation of an elastic solid (2.1) 
deformation gradient tensor for an elastic solid (1.4) 
deformation gradient tensor for a viscoelastic liquid or solid (1.7) 
deformation of an elastic solid (1.3) 
deformation of a viscoelastic liquid or a solid (1 S )  
deformation ratio (2.3) 
deformation ratio in the orthogonal deformation of an elastic solid (2.1) 
dynamic strain (5.1) 
dynamic stress (5.1) 
dynamic viscosity (5.20) 

elastic modulus (4.3) 
elongational strain rate (2.12) 
elongational viscosity (4.9) 
engineering strain (2.4) 
engineering stress (3.4) 
extensional strain rate (2.12) 
extensional viscosity (4.9) 
extension ratio (2.3) 

Finger tensor (1.8, 1.1 1) 
first normal-stress coefficient (4.13) 
first normal-stress difference (3.6) 
first normal-stress function (3.6) 
flexural deflection (6.9) 
flexural force (6.8) 
flexural modulus (6.10) 
flexural stress (6.8) 
forced flexural oscillation (6.7) 
forced oscillation (5.10) 
forced uniaxial extensional oscillation (6.6) 
free oscillation (6.1) 

general homogenous deformation or flow of a viscoelastic liquid or solid (2.10) 
general orthogonal homogeneous deformation of an elastic solid (2.1) 
Green tensor (1 3, 1.10) 

Hencky strain (2.5) 
homogeneous deformation of elastic solids (1.3) 
homogeneous deformation of viscoelastic liquids and solids (1.5) 
homogeneous orthogonal deformation or flow of an incompressible viscoelastic liquid 

homogeneous simple shear deformation or flow of an incompressible viscoelastic liquid 
or solid (2.1 1) 

or solid (2.13) 

infinite-shear viscosity (4.12) 
inhomogeneous deformation of elastic solids (1.3) 
isotropic compression (2.9) 

lateral contraction ratio (2.6) 
lateral strain (2.6) 
linear viscoelastic behaviour (5.2) 
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linear viscoelastic behaviour of a liquid (5.2) 
linear viscoelastic behaviour of a solid (5.2) 
logarithmic decrement (6.5) 
loss angle of a forced oscillation (5.10) 
loss compliance (5.17) 
loss curve (5.1 1) 
loss factor (5.1 1) 
loss modulus (5.13) 
loss tangent (5.1 1) 

Maxwell element (5.3) 
Maxwell model (5.3) 
modulus (4.3) 
modulus of elasticity (4.3) 

neutral axis (in forced flexural oscillation) (6.7) 
neutral plane (in forced flexural oscillation) (6.7) 
Newtonian liquid (4.2) 
nominal stress (3.4) 
non-Newtonian liquid (4.2) 
normal stresses (3.5) 

oscillatory (simple) shear flow (2.13) 
out-of-phase viscosity (5.2 1) 

phase angle (of a forced oscillation) (5.10) 
Piola tensor (1 .8) 
plane strain (1.8) 
plane stress (1.2) 
Poisson’s ratio (2.6) 
pure shear deformation or flow (3.1) 
pure shear of an elastic solid (2.7) 
pure shear stress (3.1) 

rate-of-strain tensor (1.12) 
relaxation function (5.7) 
relaxation spectrum (5.6) 
relaxation time (5.6) 
resonance curve (6.1 1) 
resonance frequency (6.12) 
resonance frequency (in forced flexural oscillation) (6.7) 
resonance frequency (in forced uniaxial extensional oscillation) (6.7) 
retardation spectrum (5.8) 
retardation time (5.8) 
Rivlin-Ericksen tensors (1.14) 

secant modulus (4.7) 
second moment of area (in forced flexural oscillation) (6.7) 
second normal-stress coefficient (4.14) 
second normal-stress difference (3.7) 
second normal-stress function (3.7) 
shear (2.8,2.13) 
shear compliance (4.1 1) 
shear modulus (4.10) 
shear rate (2.13) 
shear strain (2.8) 
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shear stress (3.5) 
shear viscosity (4.12) 
simple shear of an elastic solid (2.8) 
small-strain tensor (1.10) 
spring constant (5.3,5.4) 
standard linear viscoelastic solid (5.5) 
steady (simple) shear flow (2.13) 
steady uniaxial homogeneous elongational deformation or flow of an incompressible 

storage compliance (5.16) 
storage modulus (5.12) 
stored energy fimction (4.1) 
strain amplitude (of a forced oscillation) (5.10) 
strain tensor (1.8) 
stress (1.2) 
stress amplitude (of a forced oscillation) (5.10) 
stress relaxation (5.7) 
stress tensor (1.2) 
stress tensor resulting from an orthogonal deformation or flow (3.1) 
stress tensor resulting form a simple shear deformation or flow (3.5) 
stress vector (1.1) 

viscoelastic liquid or solid (2.12) 

tangent modulus (4.7) 
tensile compliance (4.8) 
tensile modulus (4.7) 
tensile strain (2.4) 
tensile stress (3.2) 
three-point bending (6.7) 
three-point flexure (6.7) 
torsion pendulum (6.2) 
traction (1.1) 
true stress (1.2) 

uniaxial compliance (4.8) 
uniaxial deformation of an elastic solid (2.2) 
uniaxial deformation or flow of an incompressible viscoelastic liquid or solid (2.11) 
uniaxial deformation ratio (2.3) 
uniaxial orthogonal deformation or flow (3.1) 
uniaxial strain (2.4) 

viscoelasticity (5.1) 
viscosity (4.12) 
Voigt-Kelvin element (5.4) 
Voigt-Kelvin model (5.4) 
Voigt element (5.4) 
Voigt model (5.4) 
volume compression (2.9) 
vorticity tensor (1.13) 

width of the resonance curve (6.13) 

Young’s modulus (4.7) 

zero-shear viscosity (4.12) 
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9. GLOSSARY OF SYMBOLS 

B 

B 
B ’  

C 
C‘ 
C ” 
C* 
IC*l 

c1 
C 

D 

D’ 
D ” 
D* 

D 
ID* I 

E 

E’ 
E” 
E* 
IE* I 
lE*l 

F 

h 
G 
G 
G 
G* 
IG*l 

J 

J 
s 
s‘ 
P 
IP I 

resonance curve (6.1 1) 
Rivlin-Ericksen tensors (1.14) 

compliance in bulk compressive deformation (4.4)/ 
bulk compliancehulk compressive compliance (4.6) 
Green tensor (1.8, 1.10) 
Piola tensor (1.8) 

compliance (general symbol) (4.4) 
storage compliance (general symbol )(5.16) 
loss compliance (general symbol) (5.17) 
complex compliance (general symbol) (5.19) 
absolute compliance (general symbol) (5.18) 
Cauchy tensor (1.8, 1.9) 
Finger tensor (1.8, 1.1 1) 

compliance in uniaxial deformation (4.4)/ 
uniaxial compliance/tensile compliance (4.8) 
storage compliance in uniaxial deformation (5.16) 
loss compliance in uniaxial deformation (5.17) 
complex compliance in uniaxial deformation (5.19) 
absolute compliance in uniaxial deformation (5.18) 
rate-of-strain tensor (1.12) 

modulus in uniaxial deformation (4.3)/Young1s 
modulus/tensile modulus/secant modulus/tangent modulus (4.7) 
storage modulus in uniaxial deformation (5.12) 
loss modulus in uniaxial deformation (5.13) 
complex modulus in uniaxial deformation (5.15) 
absolute modulus in uniaxial deformation (5.14) 
flexural modulus (6.10) 

deformation gradient tensor for an elastic solid (1.4) and for a 
viscoelastic liquid or solid (1.7) 
flexural force (6.8) 

modulus in shear deformation (4.3)hhear modulus (4.10) 
storage modulus in simple shear deformation (5.12) 
loss modulus in simple shear deformation (5.13) 
complex modulus in simple shear deformation (5.15) 
absolute modulus in simple shear deformation (5.14) 

compliance in shear deformation (4.7)/shear compliance (4.1 1)/ 
creep compliance (5.9) 
second moment of area (in a forced flexural oscillation)(6.7) 
storage compliance in simple shear deformation (5.16) 
loss compliance in simple shear deformation (5.17) 
complex compliance in simple shear deformation (5.19) 
absolute compliance in simple shear deformation (5.18) 
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K modulus in bulk compressive deformation (4 .3 )h lk  modulus/ 
bulk compressive modulus (4.5) 

A4 modulus (general symbol) (4.3) 
M 
M’ 
My 

IMl 

storage modulus (general symbol) (5.12) 
loss modulus (general symbol) (5.13) 
complex modulus (general symbol) (5.15) 
absolute modulus (general symbol) (5.14) 

N1 
“2 

first normal-stress difference/first normal-stress function (3.6) 
second normal-stress differencehecond normal-stress function (3.7) 

t traction (1.1) 
tan 6 loss factor/loss tangent (5.11) 

W stored energy function (4.1) 
W vorticity tensor (1.13) 

Y flexural deflection (6.9) 

P decay constant (of a damping curve) (6.2,6.3) 

Av width of the resonance curve (6.13) 

Y sheadshear strain (2.8) 
7 ;  shear rate (2.13) 
Y O  

Y* 
i* 
6 

strain amplitude (of a forced oscillation)(5.10) 
elongational strain ratelextension strain rate (2.12) 
complex strain (of a forced oscillation) (5.15, 5.19) 
complex rate of strain (of a forced oscillation) (5.22) 
phase angle (of a forced oscillation)/loss angle of a forced oscillation (5.10) 

?E 

E uniaxial straidengineering straid(uniaxia1) 

E small-strain tensor (1.10) 
EH Hencky strain (2.5) 
Elar lateral strain (2.6) 

tensile strain/(uniaxial) compressive strain (2.4) 

shear viscosity/coefficient of viscosity/viscosity (4.12) 
dynamic viscosity (5.20) 
out-of-phase viscosity (5.2 1) 
apparent viscosity (4.12) 
extensional viscosity/elongational viscosity (4.9) 
zero shear viscosity (4.12) 
complex viscosity (5.22) 
infinite-shear viscosity (4.12) 
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h 

hi 

A 

P 

V 

V R  

(T 

(T 

0 

(Jll 

(JO 
Dl2 
d 

(J* 

T 

X 

0 

0 

O R  

uniaxial deformation ratio/deformation ratio/ 
extension ratio/compression ratio (2.3) 
deformation gradientddeformation ratios; 

i = 1,2,3 (2.1) 

logarithmic decrement (of a decay curve) (6.5) 

Poisson’s ratio (2.6) 

decay frequency (of a damping curve) (6.4) 
resonance frequency (6.12) 

tensile stress (3.2) 
compressive stress (3.3) 
engineering stress (3.4) 
normal stresses; i = 1,2,3 (3.5) 
stress amplitude (of a forced oscillation) (5.10) 
shear stress (3.5) 
stress/stress tensor (1.2,3.1, 3.5) 
complex stress (in a forced oscillation) 

(5.15, 5.19, 5.22) 

relaxation time (5.6)hetardation time (5.8) 
bulk compressiodvolume compressiodisotropic compression/ 
bulk compressive strain (2.9) 

first normal-stress coefficient (4.13) 
second normal-stress coefficient (4.14) 
creep function (5.9) 
relaxation function (5.7) 

angular velocity (of a forced oscillation) (5.10) 
angular velocity (of a decay frequency) (6.2) 
angular velocity of the resonance frequency 
(of a forced flexural oscillation) (6.7) 
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