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Abstract 

A general expression for the rate of bridge mediated electron transfer reaction is derived 
which takes into account effects of nuclear dynamics of donor and acceptor complexes as 

well as those of the bridge. The theory includes treatment of a non-Born-Oppenheimer 
effect specific for a long distance electron transfer. The derived expression for the rate is 
designed for applications in numerical studies of long range electron transfer reactions in 

proteins. 

1 Introduction 

Recent experimental measurements of the rates of long-range electron transfer (ET) reactions in 
proteins by Dutton and Gray and co-workers [1]-[4] and their debate of the role of the protein 
medium in biological electron transfer have prompted an active development of general theory and 
computer simulations of such reactions [5]. In this paper we continue our analysis [6], [7] of the 
role of the dynamics of the protein medium and other nuclear dynamic effects in biological electron 
transfer reactions. 

Usually, long-range electron transfer reactions are discussed within the framework of general 

non-adiabatic theory developed originally for "short-range'' reactions [8], [9].  In this theory the 
reaction rate is described by the well known semi-classical expression: 

Here X and AGO are the standard reorganization energy and driving force of the reaction, and 
TDA is the coupling of the initial and final electronic states. When applied to long-range reactions 
this coupling is treated as an effective one, arising due to the presence of the atoms of the protein 
medium in between the redox centers. These atoms, or the bridge, provide intermediate virtual 
states for superexchange coupling which make a long-range electronic communication between 
redox centers possible [lo], [ l l ] .  

The above expression assumes that electron transfer occurs as a single thermally assisted 
tunneling jump, when the two electronic states on the donor (D) and acceptor (A) complexes 
become resonant in the course of thermal fluctuations. The factor l T ~ ~ l / f i  in the above expression 
can be interpreted as the transfer rate at the transition state, and the rest of the expression gives 
simply the fraction of the molecules at the transition state. (The distribution of the energy difference 
between D and A states is Gaussian, and the transition state in this formulation is a state in which 
the two levels are within ~ T ~ T D A I  from each other). 

~ 

*Lecture presented at the 17th IUPAC Symposium on Photochemistry, Sitges, Barcelona, Spain, 19-24 July 1998. 
Other presentations are published in this issue, pp. 2147-2232. 
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In such a formulation the long-distance reactions conceptually do not seem to be much different 
from any other short-range non-adiabatic reactions. The only modification is that TDA now depends 
on the D-A separation. One can question, however, the limits of the applicability of Eiq. (1.1) to 
long-range reactions on the grounds that the dynamics of the bridge atoms (i.e., atoms of the protein 
medium) are not taken into account in it. Furthermore, the above formulation includes some tacit 
assumptions, which are valid for short-range reactions but are hard to justify for long-range ET. 
The assumptions of Eq. (1.1) are as follows. 

a) The transfer matrix element TDA in a short-range theory is assumed to be some constant 
independent of the configuration of the system (the Condon approximation). In reactions in 
proteins, however, electronic coupling TDA is due to quantum mechanical tunneling and therefore 
TDA strongly depends on the configuration of the protein medium between D and A, as well as 
on the tunneling energy. In the course of thermal fluctuations, the structure of the protein medium 
constantly changes, and the D and A levels cross at different energies. That is the transition state 

of the reaction is not uniquely defined. TDA, therefore, should be expected to be some function of 
the tunneling energy, as well as configuration of the protein medium. These effects should be taken 

into accounted in a more detailed theory. 
In our previous work [6] ,  [7], we have shown that dynamics of the atoms in the protein medium 

result in modification of the conventional theory, in which the possibility of inelastic tunneling, i.e., 
the energy exchange between the tunneling electron and the protein matrix, is taken into account. 

b) The Frank-Condon factors of the quantum vibrational modes of D and A complexes should 
be included in the rate expression when applied to reactions in proteins. These are so-called 

quantum nuclear effects (see, e.g., [9]) in ET. In principle, it is not difficult to make appropriate 
adjustments in Eq. (1.1) since the standard short-range quantum non-adiabatic theory does include 
these factors. In long-range transfer, however, the quantum nuclear effects, as we will show, are 
coupled to variations of electron tunneling energy and therefore a modified treatment is needed. 

c) Finally, a usual way of evaluating the transfer matrix element TDA in the above expression 

involves the Born-Oppenheimer (BO) approximation. Again, although this is a valid assumption 
for small molecular systems, for a long-range ET system this may not be so. The transfer matrix 
element in this case is defined by a weak overlap of the exponentially small tunneling tails of 
electronic D and A wave functions, in the region far from both D and A molecular complexes. It 
has been shown earlier [12]-[15] that in the asymptotic region of the electronic wave functions, the 
BO approximation breaks down. Although it is difficult to give an exact estimate, for a specific 
protein, of the largest distance within which the BO approximation holds, it is clear that since 
there is a finite speed of propagation of the local perturbation of the electronic wave function1 the 
electrons will follow the motion of the nuclei of D/A complexes adiabatically only within a certain 
finite distance from the complexes. Beyond this distance the BO approximation is not applicable. 

Another argument which leads to the same conclusion, is that within the BO approximation 
one neglects the non-adiabatic perturbation which results in a small (if electronic terms are well 
separated) mixing of different electronic states. At the redox sites, i.e., in the core region where the 
wave function is large (i.e., of the order of unity in atomic units) these corrections are much smaller 
than the wave function itself and can be safely neglected. However, in the asymptotic region, where 
the wave function is extremely small, the non-adiabatic corrections can be comparable or even 

larger than the BO wave function itself. 

'A rough estimate would be one interatomic distance, i.e., one to two angstroms, per r = h/V where V ,  
of the order of an eV, is the typical interaction energy. This estimate gives 3A/fs. 
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It is clear from the above remarks, that long-distance reactions are, in fact, conceptually quite 

different and much more complex than the short-range ones. Unfortunately it is not known how 
strongly, in general, experimental rates actually deviate from the prediction of Eq. (l.l),  since 
independent measurements of the electronic coupling, reorganization energy, and the driving 
force are not available. On the other hand, it is well known that in proteins it is very difficult to 
observe the inverted region predicted by Eq. (1.1) [ 161. 

In this paper, we further develop our analysis of the dynamic effects published earlier [6], [7], 
and present a formulation of the theory of ET rate that addresses the questions mentioned above. 
We derive an expression for the rate which takes into account both the dependence of the electronic 
matrix element T D A  on the nuclear coordinates of the D and A complexes, and those of the bridge, as 
well as its dependence on the tunneling energy. We show that the problem of a possible breakdown 
of the BO approximation can be avoided if a special vibronic basis set is used. In this basis the 
tunneling energy is not a definite quantity, but rather has a distribution of possible values which are 

defined by the Frank-Condon factors of D and A complexes. 
Although the factors described above have been discussed to some extent in the literature 

before, no suitable expression for the rate of the reaction that could be used in a numerical analysis 
has been published. Our goal here is to derive an expression that would be specifically useful for 
numerical applications. Our general formula is based on the assumption that the electronic coupling 
matrix element TDA can be evaluated as a function of nuclear coordinates of the system around 

its equilibrium configuration, and for different tunneling energies. Other ingredients of the new 
expression are various Frank-Condon factors, standard free energy, classical reorganization energy, 
and the spectrum of vibrational modes of the protein matrix. 

2 The Rate of Long-Range Electron Transfer 

2.1 

We begin with a description of the Hamiltonian of the system and the zeroth-order states used in 
the calculation. 

Hamiltonian and the transfer amplitude 

The full microscopic Hamiltonian including nuclei is 

where the terms are: the kinetic energy of the electron, the potential at the donor, bridge, and 
acceptor sites (these potentials depend on the electronic coordinate T and nuclear coordinates of the 
respective complexes), and Hnud is the Hamiltonian of free donor, bridge, and acceptor vibrations. 

We introduce two sets of exact electronic-vibrational states. The energies and wavefunctions 
of the states localized at donor, bridge, and acceptor, respectively, satisfy the following equations: 

(Ke + + ~ n u c l  - EP))  (p(O)) = 0, (2.3) 

(Ke + V ,  + ~ ~ ~ ~ l -  E:') = 0. (2.4) 

The superscript (0) means that these are the zeroth-order states for the perturbation treatment. The 
second set represents delocalized states. For these states we have 
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(Ke + vb + V, + H n u c l -  E f )  I f )  = 0, (2.6) 

where Ii) is close to li(O)) at the D site but, unlike i(O) , has a long tail over the bridge. Using Eqs. 
(Z.l), (2.5), and (2.6) we obtain the following exact relation: 

I )  

For transitions between resonant delocalized states, Ei = E f ,  we obtain 

where Tif (Ei) is the full electronic-vibrational (vibronic) transition amplitude. 

wavefunctions are 
We will solve Eqs. (2.5) and (2.6) perturbatively. Up to the first order the energies and 

and similarly for If). The transition amplitude (2.8) becomes 

Here, the first term with (p(O) I vd 

vanishes. In Eq. (2.10) one can substitute V, for Vd according to Eq. (2.8), in which case the 
second term will be small by a similar reason. Taking into account that Ej0) = Ei = E f  = @I, 
we obtain the transition amplitude in two equivalent forms 

is negligible since vd  is localized on D where f ( O )  I )  

Now, we introduce explicit expressions for the zeroth-order functions. The localized D function 
is written in the form 

( i ( 0 ) )  = Id) Idmi) (bki) lanJ is Id; dmi, bki, ani) 

'Pd (T ,  q d )  X d m :  (qd - 6 d )  X b k ,  ( q b )  X a n ,  ('?a) . (2.12) 

Here, the electron is localized on D, its coupling with the D vibrations is strong, and therefore 
the D wavefunction is written in the BO representation as a product of a purely electronic part cp 

and a vibrational function x d  with a shifted equilibrium position of the nuclear coordinates by 6d. 
The coupling with the bridge and acceptor vibrations in this zeroth-order state is small. Therefore, 
the electronic wave function does not depend on their coordinates, and the respective vibrational 
functions, X b  and xa,  are not shifted from the equilibrium positions q b  = qa = 0. In Eq. (2.12) and 
on, the prime labels quantum numbers of vibrations with shifted equilibrium positions due to the 
electron-phonon coupling. In a similar manner we obtain the zeroth-order functions localized on 
bridge and acceptor, respectively, 
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= 1.) Idmf) Ibkf)  Ian;) la; dmf, b k f ,  an;) 

(2.14) 

In Eqs. (2.12)-(2.14) subscript z refers to the initial quantum numbers (electron is on the D) and f 
to the numbers of the final states (electron is on A) whereas numbers with no subscript refer to the 
virtual states (electron is on the bridge); cu labels the electronic states of the bridge. The energies 
of these states are 

EJo) = Jd + Edm: + Ebk, + &ant , (2.15) 

EF’ = J b a  + E d m  + Ebak’ + &an, (2.16) 

E y )  = J,  + & d m f  + E b k f  + €an’ 1 (2.17) 

where J’s and E’S stand for electronic and vibrational energies, respectively. The electronic energies 

J d , b a , a  are the minima of the corresponding adiabatic potentials. 

- 
= (Pa (T ,  4a)  X d m f  ( Q d )  X b k f  ( 4 b )  xan) (4,  - 6,) . 

f 

Next, the wavefunctions (2.12)-(2.14) are to be inserted into Eq. (2.1 1) and integrated over the 
electronic coordinates. Let us introduce the following notations for electronic matrix elements as 
functions of vibrational coordinates: 

( q d ,  Q b )  ( d  Ihl bcu) = / ‘Pd (T,  4 d )  v d  (T,  P d )  ‘Pbu (r ,  4 b )  dr, (2.18) 

and similarly for V $ b a  ( q d ,  q b )  by replacing v d  with 6; and 

&:,a ( 4 6 ,  4,) (ba lvbl a)  = 1 (Pba (T,  4 6 )  vb (r,  4 6 )  (Pa (TI ‘?a) dr, (2.19) 

and similarly for yo,, ( q b ,  q,) by replacing & with V,.  These matrix elements are functions of 
nuclear coordinates. (Yet, sometimes we will omit their arguments to shorten the notations). With 
the use of the above definitions, the matrix elements in Eq. (2.1 1) become 

(&‘)I v d  (p(O)) = (dm;, bki, ani Iv$b, (qd ,  4 6 )  1 dm, bcuk’, a n )  

= ( d d ,  bki /V$a ( 4 d ,  4 b ) I  dm, bcuk’) &,n, (2.20) 

and similar expressions are obtained for other matrix elements entering Eq. (2.1 1). 
In Eq. (2.1 1) the summation is over p = cumk’n. With the use of Eqs. (2.20) and (2.21), the 

first equality in Eq. (2.1 1) for the transition amplitude is recast as 

Further, we assume that the change of vibrational energy of the bridge is small compared to the 

electronic energy difference, I J d  - Jbal  >> IEbak‘ - E b k i I ,  and we replace Ebak’ - &bki with an 
average vibrational energy change of the bridge, G. This assumption implies that, for a long 
bridge, the electron is delocalized to a significant extent, hence the bridge oscillators only slightly 
shift their equilibrium positions and their Franck-Condon factors are not favorable for large changes 
in quantum numbers. Then, the summation over k’ can be performed using the closure relation, 
which turns the product of two double integrals in the numerator into a single triple integral. 

We introduce the following notations for electronic and vibrational energy changes: AGO = 
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Ja - Jd < 0, A&d = &dmf - Edm: , A&b = &bkf - &bki,  and A&, = &,,I - &ani. we d S 0  define the 
f  

energy of the tunneling electron, E,  as the total initial energy, E,!’), minus the vibrational energy 
left on D, &dmf,  minus the vibrational energy of the bridge, &b&, and minus the initid vibrational 
energy of A, cani (the latter does not change when the electron leaves D). Inserting (2.15), we obtain 

E = Jd - A&d -%. (2.23) 

Now, the total transition amplitude can be expressed in terms of a purely electronic transition 
amplitude at a fixed nuclear configuration and a given E,  

[The second, equivalent relation is obtained from the right-hand side equality in Eq. (2.11)]. Then 
the full vibronic transition amplitude (2.22) takes the form 

Tif (E,(O)) = (dmi,bh,ani ITDA(E;qd,4b,qa) Idmf,bkf,an>) * (2.25) 

AccordingtoEqs. (2.18), (2.19), and(2.24) theelectronicamplitudeTD~(E; q d ,  Qbi qa) is afunction 
of nuclear coordinates. This is similar to the usual BO approximation except that the meaning of 
energy E is now different. Namely, in the BO case E is a function of the nuclear configuration 
whereas in Eqs. (2.23)-(2.25) it is a function of the vibrational energy changes on donor and 
bridge. Thus, we have expressed the full transition amplitude via the purely electronic amplitude 

Next we invoke the Condon approximation for D and A vibrations by fixing the nuclear 
coordinates at their equilibrium values, q d  = q i  and qa = q:. For bridge vibrations this does not 
apply since, because of a weak electron-phonon coupling, their equilibria are not shifted between 
the initial and final states, and therefore their Franck-Condon overlaps vanish identically. Hence, 
the dependence of TDA(E;  4.11, q b ,  4:) upon q b  has to be retained. 

TDA(E; qdr q b ,  (?a). 

2.2 The reaction rate 

The reaction rate is given by the Golden rule expression, 

(2.26) 

where Avi stands for Boltzmann averaging over the initial states. The &function will be written in 
the form 

6 (EY’ - E!”) = J 6 (AGO + &d + A&b + 6 ( E d  - A&d) 6 - A&,) d&dd&a. 

Now, defining the thermally averaged probabilities of D and A vibrational excitation/ deexcitation 
caused by Franck-Condon transitions as 

(2.27) 

(2.28) 
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we obtain our formula for the rate: 

2207 

With this expression, we have achieved the main goal formulated in the Introduction - the 
ET rate is now expressed via electronic matrix element TDA(E; qd, q b ,  4,) which is a function of 

tunneling energy E and nuclear coordinates of the system. For proteins the matrix element TDA 
in this form can be calculated using methods developed recently and described elsewhere (see, 
e.g., Refs. [ 171-[20]). In the next section we will discuss Eqs. (2.23)-(2.29) and their possible 
application for calculations of the ET rates in concrete molecules. 

It is easy to show how Eq. (2.29) reduces to the Marcus formula, Eq. (1.1). Replacing the 
electronic matrix element with a constant T i A ,  we rewrite Eq. (2.29) as 

(2.30) 

where superscript (0) means that only low-frequency vibrations are taken into account. For harmonic 
oscillators with shifted equilibrium positions and the same frequencies in both electronic states, the 
spectral functions in Eqs. (2.27) and (2.28) are calculated by standard methods, and the Marcus 
formula is easily recovered in the high-temperature statistical limit (see, e.g., Ref. [21]). 

Assume now that there are high- and low-frequency vibrations. Then the spectral functions can 
be written in the form 

(2.31) 
mf 

and similarly fa ( E ) ,  where summations over quantum numbers refer to high-frequency vibrations 
and fp) ( E )  is a spectral function for low-frequency vibrations. After inserting these spectral 
functions into Eq. (2.29) we can calculate the integral over E under assumption that the matrix 
element does not change significantly within a small interval around a point E* where the spectral 

functions overlap. The energy E* is a function of the quantum numbers of high-frequency vibrations. 
The remaining integral is ko (AGO + AEd + AE,) / ITiAI2. The rate takes the form 

k = Av,!,, , C (dm!, l d ~ ~ f ) ~  (ani C ( A E ~ ,  As,) ko (AGO + AEd + A&,) , (2.32) 
mf n; 

where summation is over quantum numbers of high-frequency modes. The Franck-Condon factors 

give the probability for the system to reach a state which is close enough to resonance. The 
remaining energy difference is covered by the classical low-frequency vibrations. This results in 
the partial rate ko (AGO + AEd + A&,), which is the Marcus rate with a driving force modified 
by the energy changes of the high-frequency vibrations on D and A. The factor C (AEd, AE,) = 

~ T D A  (Jd - E * )  /TiAI2 accounts for the fact that the electronic matrix element depends on the 

vibrational state of the high-frequency modes involved in this particular transition, being equal to 
unity when such a dependence is negligible as occurs in a short-distance ET. In the above expression 
A&d and AE, are not independent variables since they approximately satisfy the energy conservation 
law AGO + AEd + AE, - 0. Therefore, C is a function of only one of these energy changes. 
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3 Discussion 

In this paper we have developed a theory which is designed for calculating the ET rate for a 
concrete macromolecule with use of a well-developed method of quantum-chemical calculations 
of the purely electronic tunneling amplitude at a fixed nuclear configuration. Our Eq. (2.25) shows 
that the full transfer amplitude TQ in the rate expression (2.26) can be represented as a vibrational 
matrix element of the electronic amplitude, TDA(E; q d ,  q b l  qa), where it is explicitly indicated that 
the amplitude is a function of donor, bridge, and acceptor nuclear coordinates, as well as the energy 
of the tunneling electron. This electronic amplitude can be calculated numerically for a particular 
molecule using, e.g., the methods developed in our group [17]-[18] (see also other work reviewed in 
Ref. [5]). The energy E,  which is an ill-defined parameter in quantum-chemical calculations, now 
acquires a clear physical meaning given by Eq. (2.23). The remaining parameters of the model are 

shifts of the equilibrium positions of D and A vibrations which can be evaluated relatively easily 
using standard quantum chemistry codes. 

In Eq. (2.25) we made the Condon approximation with respect to the local nuclear vibrations 
on D and A by replacing qd and qa with their equilibrium values q: and 4:. This is a good 
approximation for strongly coupled nuclear coordinates the motion of which the electron follows 
adiabatically. Then, the probability of ET is essentially defined by the Franck-Condon factors of 
these vibrations. As for bridge vibrations, the coupling to them is weak for electron localized on D 
or A, so that their Franck-Condon factors vanish. Therefore, the full amplitude, TDA(E; q:l q b ,  q:), 

still remains a function of bridge coordinates. In this approximation, with a neglect of non-BO 
contribtutions due to higher DIA electronic states, the ET rate is represented by Eq. (2.29). The 
functions fa,d(&) defined in Eqs. (2.27) and (2.28) represent the spectra of electron’s detachment 
(attachment) from D (to A). Since vibrations on D and A form two independent groups, the rate in 
Eq. (2.29) at given initial and final vibrational states of the bridge is proportional to the overlap of 
the two spectra, as discussed in our previous article [7]. The overlap part of Eq. (2.29) is an analog 

of the Forster formula for energy transfer. 
A notable feature of Eq. (2.29) is the &-dependence of the electronic ME. If there is some 

vibrational excitation left on D after the ET occurs ( E  > 0), the electron tunnels at a more negative 
energy, i.e., deeper under barrier since Jd < 0. This result was obtained by Ivanov and Kozhushner 
[12] for an arbitrary model of the medium, and by Onuchic et al. [13] for a specific (Davydov’s) 
model of the medium, a linear periodic chain with nearest-neighbor coupling. 

If we assume an exponential dependence of the electronic ME upon the D-A distance, 

and calculate the integral in Eq. (2.29) by the method of steepest descent, then the saddle point E* 

will be r-dependent [12]. The crossover to the case of strong nonadiabaticity occurs at such T that 
E* ( r )  shifts appreciably from its value at small r .  In numerical calculations of the ET rate between 
local centers in solids, Ivanov and Kozhushner [12] and Onuchic et al. [13] have shown that it 

essentially affects the distance dependence of the ET rate, increasing the rate at long distances with 
respect to the value obtained with an &-independent ME. Therefore, we expect that in proteins the 

effect will be significant, too. 
In our previous papers [6] and [7] we used the approximation 

TDA(E; q:iqb, 411) = TkA(E)Sb (qb) i 
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where T j A ( E )  = TDA(E; q:, 0, q t )  and sb ( q b )  is independent of E. (In Refs. [6] and [7] sb ( q b )  

was used in a linear or exponential form.) Then, the rate (2.29) is recast as 
2T 

k = AVk, (bkil sb lbkf)2 
kf 

This expression contains contributions from the ki # k f  transitions which we referred to as inelastic 
processes [6], [7]. Thus, the present formulation allows one to investigate both elastic (ki = k f )  
and inelastic ET reactions in biological molecules. 
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