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2234 COMMISSION ON THERMODYNAMICS 

Nomenclature for phase diagrams with particular 
reference to vapour-liquid and liquid-liquid 
equ i I i bria (Technical Report) 

Abstract: The phase diagrams of binary fluid mixtures are classified with regard to the 
topology of their critical curves and three-phase curves. A new nomenclature for the phase 
diagram classes is proposed, which can be applied to the previously known as well as to 
recently discovered phase diagram classes. The class names of the new nomenclature are 
systematic and descriptive; the (P,T) projection of a binary fluid phase diagram can always be 
constructed qualitatively from the class name. 

INTRODUCTION 

Phase equilibria in binary systems are usually depicted graphically in pressure, temperature, composition 
(P,T,x) space, in (P,T) and (T,x) projections or in isothermal (PJ) sections, isobaric (TJ )  sections and in 
constant composition (P,T) sections, so called isopleths. In these diagrams the different types of phase 
equilibria are represented by areas, curves or points. Some of these equilibrium states are characterized 
by special values of thermodynamic variables and will be referred to as special states. In the scope of this 
work a special state or point is defined as a state or point where 

1. Either a phase is added or disappears. 

2. Where the composition of two phases become identical. 
The composition of two phases can become identical in three different ways (Rowlinson & Swinton, 

1982). The curves representing the composition of two coexisting phases can intersect at x = 0 or x = 1. 
This is shown in Fig. la, which shows a vapour-liquid equilibrium gl where the curve that represents the 
composition of the liquid phase 1 intersects the curve for the vapour phase g in the boiling points of both 
pure components. Also these curves can merge in a horizontal tangent point (dT/dx), = 0 or ( d P / d ~ ) ~  = 0. 
This type of special point is a critical point, where not only the composition but all thermodynamic 
properties of the two phases become identical. A diagram with a critical point is shown in Fig. lb. The 
third possibility is that the two curves have a common horizontal tangent. In this case only the 
compositions of the two phases are equal, but not the other thermodynamic properties. An example is an 
azeotropic point (Fig. lc). 

p~ 

X X X 

Fig. 1. Three cases where the compositions of the two phases of a two-phase equilibrium are equal. (a) Pure 
component boiling points. (b) Critical point g = 1. (c) Azeotropic point (gl)u. 

In literature and text books many confusing terms are used to describe special states of binary fluid 
mixtures. People working in the field of fluid phase equilibria feel a need for one specific term for these 
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Nomenclature for phase diagrams 2235 

special states. The only existing systematic nomenclature is that of Griffiths (1975), which is not detailed 
enough and which is hardly ever used. 

Closely related to this problem is the nomenclature for fluid phase diagram classes. In the last decades 
many new types have been discovered from mathematical analysis of computational models (Furman et 
al., 1977; Mazur et al., 1984; Mazur et al., 1985; Boshkov & Mazur, 1986; Boshkov, 1987; van Pelt et 
al., 1991), which can not be classified in a logical way by extension of the classification scheme of van 
Konynenburg & Scott (1980), which is discussed extensively in Rowlinson & Swinton (1982). In this 
case there is the need for a general classification scheme, which can be used to classify the known types 
of fluid phase behaviour and which is flexible enough to include today unknown types of fluid phase 
behaviour. 

In this paper a new nomenclature for phase diagram classes of binary fluid mixtures is presented and 
recommendations for nomenclature for special states of these mixtures are given. Also recommendations 
for the graphical representation of these special states are included. 

NOMENCLATURE FOR SPECIAL STATES OF FLUID MIXTURES 

According to the phase rule, which reads for a non reacting system with N components 

F = N -  l7+ 2 - @ 
the phase behaviour of a binary system can be represented in a three-dimensional pressure, 

temperature, composition (P,T,x) space. l 7 i s  the number of phases in equilibrium, F is the number of 
degrees of freedom and @ is the number of extra relations that hold in a special state. Usually for the 
composition variable the mole fraction x is used. Different types of phase equilibria in binary systems 
and their representations in (P, T,x) space are given in Table 1. In the example of the critical point in Fig. 
Ib l7= 1 and I$ = 2 and in the example of the azeotropic point in Fig. Ic l7= 2 and @ = 1. For a binary 
system the maximum number of phases in equilibrium is four, the minimum number of degrees of 
freedom is zero. 

Since it is tedious to draw three-dimensional diagrams in perspective, it is common practice to use 
two- dimensional sections and projections of the (P,T,x) space to represent the phase behaviour of a 
binary system. Sections at constant temperature are called (PJ) sections, at constant pressure (Zx) 
sections and at constant composition (P, T)  sections or isopleths. Among the projections, the projection 
on the (P,T) plane, the (P,T) projection, is the most common. Of course, the sections and projections do 
not contain the complete information of the (P,T,x) space, e.g., in projections only information on 
nonvariant ( F  = 0) and monovariant ( F  = 1) equilibria can be found. 

Table 1. Phase equilibria in binary systems and their representation in (P,T,x) space, with x = x2, Z7is the number of 
coexisting phases and F the number of degrees of freedom according to the phase rule. 

Representation in (P, T,x) Examples 

I7= 1 F =  3 region s17 s2.1, g, 11, 12, s 
I7= 2 F = 2 two surfaces: xa(P, Tj; xP(P, Tj gl, Sll, 1112 

critical curve I7= 1 F =  1 x'[P(T)] g = 1, 11 = 12 

Z7= 4 F = 0 four points at one P and T s1gls2, g1112s 
critical endpoint I7= 2 

I7=3  F = 1 three curves: xr[P(T)]; xP[P(T)l; x/[P(T)l slgl, s11s2, llg12 

azeotropic curve I7= 2 F = 1 x"[P(T)] 

F = 0 two points at one P and T g(l1 = 12L (g = 11Y2, 
s(g = 1) 

critical azeotrope Z7= 1 F = 0 one point 

The variables P and T and the variable x are of a different nature (Griffiths & Wheeler, 1970). P and T 
are "field" variables, variables that have the same value for all coexisting phases and the mole fraction x 
is a "density" variable, a variable which has in general a different value from phase to phase. Phase 
diagrams can also be represented in graphs using only fields as variables. This is not common practice, 
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2236 COMMISSION ON THERMODYNAMICS 

but it has the advantage that the phase diagram only shows the intrinsic features of the phase behaviour 
and not the "accidental" consequences of the choice of the coordinates (Furman et al., 1977). For 
instance, for a three-phase equilibrium in a binary system we have F = 1. Such an equilibrium is 
represented by three curves in (P,T,x) space, because the composition of the three phases is different at 
one P and T, but this equilibrium is represented by one curve in a three-dimensional diagram using P, T 
and the chemical potential of one of the components as variables, which are all "fields". 

The term global phase diagram has been introduced by Furman et al. (1977). This type of phase 
diagram is generated by a theory or a model, using the molecular parameters of the model as additional 
field variables. From this multi-dimensional global phase diagram also two-dimensional projections or 
sections can be constructed. An example of such a two-dimensional global phase diagram is the i; A 
masterchart of van Konynenburg & Scott (1980) for constant 5. These authors used the van der Waals 
equation of state with 

<= (~22~7222 - ~llh11~)/(a22h222 + allhl12) 

A = ( a l l h 2  - 2a1241b22 + a2249222)/(a22h222 + a d h 2 )  

{= (b22 - biJ(b22 + bii) 
as additional field variables. al l  and bll are the pure component van der Waals constants. A region in 

this master chart represents one of the classes of fluid phase diagrams, which are discussed in the section 
A new nomenclature for phase diagram classes of binary fluid mixtures. 

In the following we propose a nomenclature for special states in phase diagrams for binary fluid 
systems, which is more informative than the notation suggested by Griffiths (1975). These states will be 
arranged in levels. Level n means that the number of degrees of freedom according to the phase rule for 
states in this level is F = (3 - n). A binary system with components A and B can be denoted with [A + B], 
[xAA + xBB] or [(l - x)A + xB], where x is the mole fraction of component B. In this paper we will use 
the last notation. The states of aggregation will be denoted with g (gas or vapour), 1 (liquid) or s (solid), 
according to the IUPAC recommendations (Mills et al., 1993). The distinction between gas and liquid is 
to some extent arbitrary. A fluid phase (i.e. gas or liquid) can be denoted with f. In binary systems more 
than one solid phase and more than one liquid phase can coexist. In general these phases have a different 
composition. A right subscript 1, 2 can be used to distinguish between these phases. In the notation for 
multiphase equilibria it is advised to list the phases in the order of increasing x. 

Example slgll is the recommended notation for a three-phase equilibrium with phases sl, g, and l1 

For all states discussed in level 4 and higher the number of degrees of freedom F is negative and 
hence it is very unlikely that these states can be realized experimentally in a binary system. These special 
states are mainly of interest to theory and especially help us to understand the transitions between the 
various types of phase diagrams. 

(X(Sl)< x(g> < X(l1)). 

Level 0: volume in (P,T,x) space 

For F = 3,17= 1 and we are dealing with a homogeneous phase. Griffiths denoted this state with A. We 
advise to use s, 1 or g. 

Level 1: area in (P,T), (P,x) or (T,x) section 

For F = 2, 17= 2 and we are dealing with two-phase equilibria. All these states were denoted AA or A2 
by Griffiths. Again we recommend to use a more informative notation, like gs, gl, 1112, or gll equilibria. 

Level 2: curve in (P,n projection 

In this case F = 1 and we are dealing either with a critical curve, with the coexistence of three phases, or 
with the coexistence of two phases with the same composition. 
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Nomenclature for phase diagrams 2237 

Coalescence of two phases 
In our nomenclature a critical curve is denoted with C, or more specific, depending on the nature of the 
critical curve, with g = 1, l1 = 12, l1 = g, etc. An upper or lower critical point is indicated with UC or LC, 
respectively. For instance, a lower critical (solution) temperature can be denoted with LC, , where the 
subscript P means "at constant pressure", and an upper critical (solution) pressure with UCT. The 
notation UC and LC defaults to UCp and LC,, respectively. In ( P J ) ,  (TJ)  and (P,T) sections the critical 
state is represented by a point, for which the same nomenclature can be used. The critical state was 
denoted by Griffiths with B. 

Coexistence of three phases 
The recommended notation for a three-phase curve is g1112, llg12, slgl, s11s2, etc., depending on the nature 
of the three-phase curve. The notation of Griffiths for a three-phase equilibrium is AAA or A3. 

Coexistence of two phases with the same composition 
If, in case of a two-phase equilibrium, the compositions of the two phases are equal as in the case of an 
azeotrope, then according to the phase rule F = 1. We propose to use the notation (gl), for the azeotropic 
curve in (P,T,x) space, and in (P,T) or (TJ)  projection and also for the azeotropic point in (TJ),  ( P J ) ,  or 
(P,T) sections. Further distinction can be made between a maximum pressure and a minimum pressure 
azeotrope. The notation used by Griffiths (A*=) is too general, because similar points can be found for 
other phase equilibria, e.g. of sl two-phase equilibria. 

Temperature or pressure maximum of an isopleth 
Often the temperature maximum of the gl equilibrium in a (P,T) section is called maxcondentherm or 
cricondentherm and the pressure maximum maxcondenbar or cricondenbar (Rowlinson & Swinton, 
1982). These points do not represent special states according to the definition. 

Level 3: point in (P,q projection, area in two-dimensional global phase diagram 

Extrema of the critical curve in (P, T)  projection 
A pressure maximum of the critical curve in the (P,T) projection is not a special point of the critical 
curve. However, it brings about a special point in the (T,x) section at the pressure of the pressure 
maximum (see Fig. 2). In Fig. 2a on pressure increase the two-phase region ap disappears, since we are 
dealing with upper critical pressures. In Fig. 2b two separate two-phase regions ap join on pressure 
increase. Schneider (1966) used the term hypercritical point of the first kind for the pressure maximum of 
the critical curve for the case of Fig. 2a and hypercritical point of the second kind for the pressure 
maximum of the critical curve for the case of Fig. 2b. This latter point was called homogeneous double 
ylait point by van der Waals & Kohnstamm (1927). Since the term hypercritical should be reserved for 
another phenomenon and we are not dealing with a double point of the critical curve, we propose simply 
to call a pressure maximum of the critical curve a maximum pressure critical point. To differentiate 
between the case of Fig. 2a and that of Fig. 2b, the pressure maximum of the critical curve in Fig. 2a can 
be called an elliptic maximum pressure critical point and that in Fig. 2b a hyperbolic maximum pressure 
critical point. 

The critical curve can also show pressure minima and temperature maxima and minima in a (P,T) 
projection. Following the proposed terminology for a pressure maximum, these points can be denoted 
with minimum pressure critical point, maximum temperature critical point and minimum temperature 
critical point, if necessary with the addition elliptic or hyperbolic. 

Critical phase coexisting with another (noncritical) phase: critical endpoint 
A three-phase curve in a binary system involving two or three fluid phases can be terminated in a (P,T) 
projection by a so-called critical endpoint in case of coalescence of two fluid phases ( F  = 1) in the 
presence of the third phase. The notation of Griffiths for this kind of special point is BA. The critical 
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2238 COMMISSION ON THERMODYNAMICS 

P 

endpoint can be the lower or the upper temperature limit of a three-phase curve. These endpoints are 
conventionally called lower critical endpoints or, respectively, upper critical endpoints". It is also 
possible that a critical endpoint is the low pressure or the high pressure limit of a three-phase curve. 

a) 

one phase 

p, 
-------- 

- n B  

I I 
T 

(a) 
X X 

1 

P = h U  

1 

X 

X X X 

Fig. 2. A critical curve a = p with a pressure maximum. (a) Two critical points coincide such that the two-phase 
region disappears: an elliptic maximum pressure critical point. (b) Two two-phase regions join at the pressure 
maximum of the critical curve: an hyperbolic maximum pressure critical point. 0: critical point. 

*Sometimes the distinction between upper and lower critical endpoint is not clear. In these cases it is better not to 
make a distinction at all. 
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Nomenclature for phase diagrams 2239 

To be in line with the proposed notation for critical points we propose to denote a critical endpoint 
with CE. A critical endpoint which is the low-temperature limit of a three phase curve can be denoted 
with LCE(T) and a critical endpoint which is the high-temperature limit of a three-phase curve can be 
denoted with UCE(7'). These critical endpoints are conventionally denoted with LCEP and UCEP, which 
has the disadvantage that no distinction can be made with critical endpoints that limit a three-phase curve 
towards low or high pressure. For these critical endpoints we propose to use LCE(P), respectively 
UCE(P). The notation LCE and UCE is by default the notation for a critical endpoint which limit a 
three-phase curve towards low or high temperature, respectively. For some types of phase diagrams the 
UCE(T) is denoted with K-point and the LCE(7') with L-point. This notation, which is mainly used by 
American authors, is non-systematic and we advise not to use it. 

Examples of critical endpoints are g(ll = 12) and (g = l)sz equilibria. 

Azeotrope coexisting with another (noncritical) phase 
In the P-T projection an azeotropic curve can end on a three-phase curve. In this point, which is called 
azeotropic endpoint, the three-phase curve and the azeotropic curve are tangent. This type of point was 
indicated with A2,A by Griffiths. We propose a more informative notation, which includes the nature of 
the phases involved and which is in line with the proposed notation for two- and three-phase equilibria, 
e.g., (g11),12 (Fig. 3a) or s(gl),, (Fig. 3b). 

Fig. 3. Azeotropic endpoints. (a) (gll)&. (b) s(gl),. (c) Limiting azeotrope - - - - - - - : three-phase curves; 
---- : azeotropic curves; : vapour pressure curve. 

Coalescence of two azeotropic phases 
Another possible limit of an azeotropic curve is a critical azeotropic point or critical azeotrope. This 
point is a point where the azeotropic curve is tangent to a g = 1 curve. For this reason we propose to 
denote this point with (g = l),. Griffiths' notation for a critical azeotrope is Baz. 

Azeotrope at x = 0 or x = 1 
Furthermore an azeotropic curve can end in a tangent point on a pure-component vapour-pressure curve 
(Fig. 3c). This case is called a limiting azeotrope or an azeotropic boundary. If necessary this point can 
be denoted with (gl)az(x = 0) or (gI),& = 1). 

Intersection (only in (P, T )  projection) of pure-component vapour pressure curves 
This point of intersection, which is sometimes called Bancroft-point (van Konynenburg, 1968), is only a 
point of intersection in the (P,T) projection and we do not recommend the use of a special notation. 

Critical point on the boundary of local stability 
This point is a point on the critical curve where a4G/ax4 = 0 and it separates the stable or metastable part 
of the critical curve (a4G/ax4 > 0) from the unstable part of the critical curve (a4G/ax4 c 0). This point, 
which was named heterogeneous double plait point by van der Waals & Kohnstamm (1927), is a 
cusp-like double point of the critical curve in the ( P , n  projection; hence, we propose to name this type 
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of point a critical cusp and denote it with CC. (See Fig. 4). Critical cusps are usually not stable, and 
hence cannot be observed experimentally. 

Coexistence of four phases 
The (P,r) projection of the four points which represent the composition of a four-phase equilibrium in 
(P,T,x) space is one point. This point is called quadruple point and in line with the conventional notation 
we propose to denote this point with Q. Griffiths' notation for this equilibrium is &. Examples are glllzls, 
slglsz, gll12s2 , and s11112s2 equilibria. 

Fig. 4. A critical cusp (CC). - : stable part of the critical curve; ............... : metastable part of the critical 
curve; ------------: unstable part of the critical curve; - - - - - - -: three-phase curve; A: upper critical endpoint. 

Level 4: line in a two-dimensional global phase diagram 

Osculation point of a critical curve and a three-phase curve 
The osculation point of a critical curve and a three-phase curve in a (P,T) projection is called a double 
critical endpoint (van Konynenburg, 1968). In this point two critical endpoints of the same nature and on 
different three-phase curves coincide, such that the three-phase curves are joined (see Fig. 5a). In a 
binary phase diagram such a situation is very unlikely to be observed experimentally ( F  = -1). We 
propose to denote this equilibrium with DCE. Examples are the coincidence of two g(ll = 12) or two 
(g = l,)lz critical endpoints. 

Coincidence point of two critical endpoints of a different nature on the same three-phase curve, such 
that the three-phase curve collapses 
This special point is a point of coalescence of three phases. It can also not be realized in a binary system 
and is called (unsymmetrical) tricritical point. The notation of Griffiths for such a point is C. Because we 
propose to denote an ordinary critical point with C, we propose to use the notation C" for a higher order 
critical point. n is the number of phases that become identical. So our proposed notation for a tricritical 
point is C3. An example is the coincidence of an LCE g(ll = 12) with an UCE (g = 11)12 on the same 
three-phase curve g1112 in such a way that the length of the three-phase curve in the (P,r) projection 
becomes zero (see Fig. 5b). 

Coincidence point of two critical endpoints of the same nature on the same three-phase curve, such that 
the three-phase curve collapses 
For this special point we propose the name isolated critical endpoint and the notation ICE. Again this 
special point can not be realized in a binary system. An example is the coincidence of a LCE g(ll = lZ) 
with an UCE g(ll = 12) on the same three-phase curve gll12 in such a way that the length of the three-phase 
curve in the (P,r) projection becomes zero (see Fig. 5c). 

Critical azeotrope coexisting with another (noncritical) phase 
Griffiths' notation for this critical azeotropic endpoint is B,A. We propose the notation CE,,. 
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Critical phase in the presence of two noncritical phases 
We propose to name this point bicritical three phase point and to denote it with BT. Griffiths' notation 
for this point is BA2. An example is a (g = 11)12s2 equilibrium. 

1,=11 

1,=1* p c' 

. . ' &I* _ -  

..II 
T 

Fig. 5. Two critical endpoints coincide. (a) A double critical endpoint (DCE). (b) A tricritical point (C ). (c) An 
isolated critical endpoint (ICE). - : stable part of the critical curve; - - - - - - -: three-phase curve; 

critical endpoints. 
: pure component vapour pressure curve; 0: pure component critical point; A, V: upper and lower 

Collision of two critical curves 
When two separated parts of the critical curve meet and exchange branches we are dealing with a double 
point of the critical curve. Two cases can be distinguished. In the first case two critical cusps coincide. 
See Fig 6a. Often this point is referred to as an unstable mathematical double point. In line with the 
above we propose to name this type of point double critical cusp and to denote it with DCC. 

P 

Fig. 6. Collision of two critical curves. (a) Coincidence of two critici x s p s  in a double critical cusp (DCC). (b) 
Coincidence of two stable branches of a critical curve in a hypercritical point (HC). -: stable part of the 

- - - - - - - : three-phase curve; A, V: upper and lower critical endpoints. 
critical curve; . ...... ... ..... . metastable part of the critical curve; -----------: unstable part of the critical curve; 
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In the second case two stable branches of the critical curve meet (see Fig. 6b). This type of double 
point has been referred to as stable mathematical double point. For this point we propose the name 
hypercritical point and the notation HC. 

Level 5: point in two-dimensional global phase diagram 

Tricritical point coexisting with another (noncritical) phase 
We propose to name this point tricritical endpoint or tricritical quadruple point with the notation C3E or 
C3Q. Griffiths' notation for this type of point is CA. An example is a (g = l1 = 12)13 equilibrium. 

Coincidence of a tricritical point and double critical endpoint 
After Meijer et al. (1988) we propose to name this type of point van b a r  point with the notation VL. 
Jackson (1991) named this type of point tricritical endpoint, but this name is not in line with the 
nomenclature of ordinary critical points and critical endpoints. Also this type of point has been referred 
to as symmetrical tricritical point. 

Level 6: point in three-dimensional global phase diagram 

Coalescence of four phases 
In line with the name and notation for a tricritical point we propose the name tetracritical point and 
notation C4 for a fourth order critical point where four fluid phases become identical. Griffiths' notation 
for a fourth order critical point is D. 

RECOMMENDATIONS FOR THE GRAPHICAL REPRESENTATION OF BINARY PHASE 
DIAGRAMS 

Although less important than an unique nomenclature for special states in phase diagrams it can also be 
useful to use a unique graphical representation for the different types of equilibria. In Table 2 a proposal 
is given for the representation of nonvariant and monovariant states in (P,  r )  projections. 

Table 2. Graphical representation of nonvariant and monovariant states 

Equilibrium state Representation 

pure component vapour pressure curve 
critical curve stable part 
critical curve metastable part 
critical curve unstable part 
three-phase curve 
azeotropic curve 
critical point pure component 
critical point in P-T, T-x, and P-x section 
pure component triple point 
azeotropic endpoint 
lower critical endpoint 
upper critical endpoint 
quadruple point 

0 
0 
A 
+ 
v 
A 
0 
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A new nomenclature for phase diagram classes of binary fluid mixtures 

In his 1968 dissertation on global phase behaviour of binary fluid mixtures, P. van Konynenburg found 
five different classes of phase diagrams, to which he gave the names I to V. Today, more than 16 basic 
classes are known. The additional phase diagram classes are usually referred to by a roman number in 
connection with a modifier (*, **, and/or subscript 4, subscript b or superscript h). However, the 
meaning of the modifier symbol is not always the same. This nomenclature, the product of a number of 
different research groups , is very confusing. Therefore, we want to present a new system of names which 
is able to describe all known and yet unknown phase diagrams in a rational way. 

Rational nomenclature 

The nomenclature described here regards primarily the topology and connectivity of critical curves. The 
vapour-pressure curves of the pure components are always present and need not to be designated 
explicitly. The number and extent of three-phase curves, if present, can be deduced from the location of 
the critical curves and their endpoints, hence only the latter curves and points need to be designated. The 
construction of a rational phase diagram is done in four steps:. 
1. The critical point of a pure component is always the starting point of a critical curve or a sequence of 

critical curves connected by three-phase lines. We begin by describing the behaviour of the critical 
curve starting at the critical point of the component with the higher critical temperature. All critical 
curve segments in the sequence originating from this point are counted; next the "target" of this 
sequence is indicated with a superscript. Possible targets are: 
C 

P 
2 

Q 

for sequences going upwards to a compact fluid state at very high pressure. Many theories of 
fluid mixtures use the concept of limiting critical states at infinite pressure, 
for sequences ending at the critical point of the other pure component, 
for sequences terminating at a critical endpoint, from which a three-phase curve emerges which 
terminates at absolute zero of temperature, 
for curves going to an endpoint from which a three-phase curve runs to a quadruple point (4 
fluid states in equilibrium). Usually another three-phase curve runs from here to absolute zero 
temperature. If no different topology of the quadruple point is specified by other critical curve 
symbols, this three-phase curve and its target are implied by the Q symbol and must not be 
mentioned in the class name. 

If this part of the diagram is not known, this can be indicated by Xfarger, or, if also the target is 
unknown, x'. 
The behaviour of the critical curve sequence starting at the critical point of the lower boiling 
component is described. However, if the target of the critical curve sequence described in step 1 is P 
(the critical point of the other pure component), this description is not necessary. 
Critical curves which were not counted in steps 1 and 2 are classified as follows: 
1 

2. 

3. 
curves coming from high pressure (C state) and going to a critical endpoint; in practice, of 
course, 1-type critical curves end on crystallization surfaces, 
curves with two critical endpoints, 
curves coming from high pressure and going through a pressure minimum back to high pressure, 
which have no endpoints (if solidification is disregarded), 

II 

u 

o closed loops. 
These symbols have been chosen to mimic the shape of the critical curves. 
With these symbols, the remaining critical curves are now listed in the order of their appearance 
from high to low temperature. Except in clear cases, the target or targets (names of the connected 
curves) must be written as superscripts. Parentheses can be used to group critical curves forming a 
sequence, i.e., joined by three-phase curves. If this is still ambiguous, it is necessary to label each 
critical curve with a Greek character subscript and use this symbol as target indication. 
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4. It may be desirable to follow these symbols with detailed information. The following abbreviations 
should be used: 
H for heteroazeotropic behaviour, 
A for azeoptropy, 
Q for quadruple point, 
M for pressure maxima; the number of maxima may be indicated by a superscript, 
W for pressure minima: the number of minima may be indicated by a superscript. 
This information usually refers to a specific sequence, so it must be written directly behind this 
sequence symbol. To connect it to a particular line of a sequence starting at a pure component, it is 
possible to write the whole sequence in parentheses. 
Sometimes it may be important to give more information. This could be given after a decimal point. 
Also, it may be desirable to include information about solid phases. This could follow after a slash 
(/); a nomenclature system has yet to be designed. 

5. 

EXAMPLES 

Several examples for the construction of the rational phase diagram names are given in this section. 
Furthermore, a translation table of the van Konynenburg class names as well as some of the new names is 
given in Table 3, and schematic (P,T) phase diagrams of some of the most important phase diagram 
classes are shown in Fig. 7. 

I 
b) 

V 
9 

Pbl 
I 

'I' 

T 

0 
P i & i  I ,  I ,  

T 

psi 
I 

T 

Fig. 7. Phase diagram classes of binary fluid mixtures. - : vapour-pressure curves; -* . critical 
curves; - - - - - - -: three-phase curves; - - - -: azeotropic curves; 0: pure component critical points; 0: 
quadruple point; A, V: upper and lower critical endpoints, +: azeotropic endpoints. 
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Fig. 7. Continued. 

In the phase diagram class I (van Konynenburg-Scott nomenclature) only one critical line exists, 
which connects the critical points of the pure components. The new class name is therefore 1' (see Fig. 
7a). For class I1 a liquid-liquid critical line is added: 1'1 (Fig. 7c). 

In class IV, a critical curve runs from the critical point of the less volatile component to a lower 
critical endpoint. From here a three-phase curve runs to an upper critical endpoint, and from here a 
critical curve to the other pure component critical point. Hence the critical curve sequence has two 
critical segments. In addition, there is a liquid-liquid critical curve. The new class name is therefore 2'1. 
A lengthier, but admissible alternative name is (nn)'Z (here the pure component critical points are treated 
as endpoints). This latter expression is useful, if additional characteristics of a critical curve need to be 
specified. For instance, if the critical curve originating at the critical point of the less volatile component 
passes through a maximum, this could be specified by (nMn)'Z. The "transition" phase diagram between 
all 1' and 2' phase diagrams contains a tricritical point (see Fig. 5b). 

The shield region class 11-A* (Fig. 7k) can be translated into 1'AnlQ or l'AnQQZQ. The latter name is 
longer, but does not contain more information: A quadruple point is the intersection point of four 
three-phase lines, one of which is usually connected to absolute zero. The three remaining three-phase 
curves originate at the endpoints of the n and 1 critical lines. Since no other combination is possible, it is 
not necessary to give the target three times, and the shorter name l'AnlQ is sufficient. 

For some mixtures containing strongly polar compounds closed immiscibility domains have been 
observed (van Konynenburg-Scott class VI). This is caused by a n critical curve segment; the new class 
name is therefore 1'n (see Fig. 71). It has been suggested that in this class an additional low-temperature 
liquid-liquid critical curve might appear (Boshkov, 1987); this would change the name to 1'nl (see Fig. 
7q). If a high-pressure immiscibility is found, the class name becomes l'nu (see Fig. 7n). If high- and 
low-pressure immiscibility domains overlap (compare Figs. 7n & 7p), a new diagram type is created 
which has no name in the old nomenclature system. The new name is 1% or, more precisely, l'(11). The 
parentheses indicate that the two 1 critical curves form a sequence, i.e., that they are joined by a 
three-phase curve. But since there are no other ways of placing the two 1 critical curves without leaving 
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one three-phase curve open-ended, the parentheses are not strictly necessary. The "transition" phase 
diagram between nu and (11) contains a hypercritical point. 

Table 3. Comparison of phase diagram class names according to the van Konynenburg-Scott system and the rational 
nomenclature. 

Old nomenclature New nomenclature Figure 

I 
I1 
11-A* 
I11 
111-A* 
111-A"* 
IV 
IV* 

1v; 

V W  

Iv4 

V 

VI 
vlb 

VII 
VIP 
VIII 

1' 
1' 1 
lPAlnQ 
l'AlnQ 

lCIQAn 
lCIQ nA 

2' 1 
2c1z 
lQlQl 

2p 
3' 
l'nl 
l'nul 
22'nl 
2'nul 
1 c2c 

2'lnQ 

7a 
7c 
7k 
7g 

7d 
7i 
7J 

7b 
7f 
71 

7m 

7h 

DISCUSSION 

For all realistic phase diagram classes which are known until now, the new nomenclature leads to 
reasonably short, but nevertheless descriptive names. 

The nomenclature is based on observable curves only. This is an advantage for its application to 
experimentally determined phase diagrams. In some lattice gas theories, the high pressure target (C)  is 
shown to bear some analogy to a pure component critical point (Furman et al., 1977; Furman & Griffiths, 
1978). This fact might be used to devise a more "symmetric" nomenclature of phase diagrams for such 
theories. More realistic models, however, may have more than one high-pressure target (Deiters & 
Kraska, 1992). Hence it would be impossible to classify a real mixture correctly by comparison with 
lattice models. 

The old nomenclature has the disadvantage that the addition of a new feature to a phase diagram leads 
to a completely new class name. E.g., if a mixture has been classified as type I because of VLE 
measurements, and if later on a low-temperature liquid-liquid phase splitting is discovered, the class 
name must be changed to "II", and the assignment "I" must be considered wrong. With the new 
nomenclature system, the class name merely changes from 1' to 1'1. Thus the correct knowledge of the 
gas-liquid critical behavior is preserved by the nomenclature. 

Since the number of symbols in a class name is not limited, in principle an arbitrary number of phase 
diagram classes can be encoded. In reality, we must expect this to be a yet unknown finite number. It is 
possible, however, to give at least an estimate of the maximum number of phase diagram classes in a 
binary mixture: 

We denote this number by nf and assume 

nt lnlnpa, 
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where nl  is the number of ways to construct a critical curve or critical curve sequence originating from 
the critical point of species 1, n2 is the analogous number for species 2, and n, is the number of additional 
critical curve segments (not attached to the pure species critical points). However, experience with 
several equations of state, for which global phase diagrams have been investigated, shows that the 
number of critical segments is limited: 

A sequence of critical curves (joined by three-phase lines) cannot have more than 3 elements. 
There are no more than 3 additional critical segments. 
There is no more than 1 u-type critical curve. 
There is no more than one Q-point (four-phase state lllg) 

1. The P set: 

Under these conditions only three sets of phase diagram classes have to be considered: 

It contains phase diagram classes which have a continuous critical curve between the critical 
points of the pure species. Their class names are constructed as follows: 
1st symbol: l', 2', 3' n2 = 3 
2nd symbol: not required 
symbol group: may be void, 1, u, lu, n, nu, 11, nul, nlQ, nZQu 

Hence there are n,(P) = 30 classes in this set. 
2. The Cset: 

1st symbol: l', 2', 3' 
2nd symbol: lZ, 2', l', 2', 3' 
symbol group: as above 

nl = 1 
n, = 10 

122 = 3 
nI = 5 

n,= 10 

This would give nt(C) = 150 classes. However, there are some forbidden combinations, I, Zu,or 
nu1 with 1' or 2' (there can only be 1 three-phase line running towards zero), or 2', 3'. Hence 
the estimate for this set is n,(C) = 144. 

1st symbol: la, 2Q, 3Q 
2nd symbol: la, 2', 3' 
Symbol group: u, n, nu, 11 

Hence the number of phase diagram classes in this set is nt(Q) = 36. 

3. The Q set: 
122 = 3 
nl = 3 
n, = 4 

The total number of phase diagram classes in all three sets is then 210. This number is probably too 
large; other, yet to be discovered restrictions on phase diagram topology might decrease it to some 
extent. But even the number of classes known today from experiment or equations of state is so large that 
a rational nomenclature is required. 
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APPENDIX I. LIST OF SYMBOLS 

1. Properties 

a h  
F 
G Gibbs energy 
N number of components 
P pressure 
T temperature 
X mole fraction 

parameters in the van der Waals equation 
number of degrees of freedom 

Greek letters 

4 
I7 number of phases 

number of extra relations in the phase rule 

Superscripts 

az azeotro pic 
C critical 
a, P, Y phases 
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Subscripts 

A, B, 1 ,2  components 

2. Thermodynamic states 

f 
g 
1 

BT 
C 

S 

c3 
c4 
C" 
cc 
CE 
C3E, C3Q 
DCC 
HC 
ICE 
LC 
LCE 
Q 
uc 
UCE 
VL 

Subscripts 

1 2  
az 

fluid phase 
gas phase 
liquid phase 
solid phase 
bicritical three-phase point 
critical point 
tricritical point 
tetracritical point 
nth-order critical point 
critical cusp 
critical endpoint 
tricritical endpoint or tricritical quadruple point 
double critical cusp 
hypercritical point 
isolated critical endpoint 
lower critical point 
lower critical endpoint 
quadruple point 
upper critical point 
upper critical endpoint 
van Laar point 

subscripts to distinguish between two phases of the same state of aggregation 
azeotropic 

3. Phase diagram classes 

i 
1 
n 
0 

U 

A 
H 
M 
Q 
W 

critical curve sequence with i segments 
critical curve coming from high pressure 
critical curve with two critical endpoints 
closed loop critical curve 
critical curve coming from high pressure and going through a pressure minumum back to 
high pressure, which have no endpoints 
azeotrope 
heteroazeotrope 
pressure maximum 
quadruple point 
pressure minimum 

Superscripts 

C 
P 

compact fluid state (critical curve target) 
critical point of pure component (critical curve target) 
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Q 
Z 

critical end point of three-phase curve that runs to a quadruple point (critical point target) 
critical end point of three-phase curve that extends to T = 0 K (critical curve target) 

APPENDIX I1 

Class l'phase behaviour 

In Figure 8 the combined (P,T) and (T,x) projections of class 1' phase behaviour (type I according to the 
classification of van Konynenburg & Scott) are shown. In a class 1' system only one critical curve is 
found. This is the vapour-liquid critical curve g = 1 which runs continuously from the critical point of 
component 1 to the critical point of component 2. Class 1' phase behaviour is found, for instance, in 
binary mixtures of methane with n-alkanes up to n-pentane (Rowlinson & Swinton, 1982). 

Fig. 8. Combined (P,r) and (Tx) projections of class 1' fluid phase behaviour. ~ : vapour-pressure curves; 
: critical curve; 0: pure component critical point. 

In Figure 9 some ( P J )  and (TJ) sections are shown. The (PJ) sections at TI and T2 have the shape of 
Figure la. At T3 and T4 component 1 is supercritical and the ( P J )  sections show a binary critical point as 
in Figure lb. In the T,x-sections the two-phase gl region has a reversed position compared with the 
P,x-section. Note that the (TJ) section at P2 shows two critical points, which is a consequence of the 
pressure maximum of the critical curve in the (P,T) projection. These pressure maxima are often found in 
class 1' systems. 

Fig. 9. Class 1' fluid phase behaviour. (a) (PJ) sections at constant T. See Figure 8. (b) (TJ) sections at constant P . 
See Fig. 8. 
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Class lP /  phase behaviour 

Class 1'1 phase behaviour (type I1 according to the classification of van Konynenburg & Scott) has a 
continuous vapour-liquid critical curve just as in the case of class 1' phase behaviour. In addition, 
systems of this type show a liquid-liquid critical curve l1 = l2 and a three-phase equilibrium g1112 . See 
Fig. 10, which shows the P,T- and Tj-projection of a class 1'1 system. In the (P,T) projection the curves 
l1 = l2 and g1112 intersect in a UCE g(ll = 12.) In the diagram shown the liquid-liquid critical curve has a 
positive slope in the (P,T) projection, but this curve can also have a negative slope or a temperature 
minimum. If not interrupted by the formation of a solid phase, the l1 = l2 curve runs to infinite pressure. 
Both the l1 = l2 curve and the g1112 curve can be completely hidden by a solid-liquid equilibrium surface, 
so in practice it may be impossible to distinguish between class 1' phase behaviour and class 1'1 phase 
behaviour. For instance, in the binary systems of carbon dioxide + n-alkanes for carbon number n 
6<nc13 type I1 phase behaviour is found (Schneider, 1978). For lower values of n no stable liquid-liquid 
equilibria are found, but it is very likely that the system carbon dioxide + n-pentane, for instance, is also 
ofclass 1'1. 

T 

- ' - ' - ' 2' -A 

I 1. 

Fig. 10. Combined (P,T) and (TJ) projections of class lPZ fluid phase behaviour. ~ : vapour-pressure 
curves; -: critical curves; - - - - - - -: three-phase curve; 0: pure component critical point; A: upper 
critical endpoint. 

In Fig. 11 four characteristic (P,x) sections are shown. At low temperature the Pyx-sections show a 
g1112 equilibrium. At higher pressure than the three-phase pressure the gll and 1112 two-phase regions are 
found, and at lower pressure the two-phase region g12. With increasing temperature the compositions of 
the two liquid phases of the g1112 equilibrium approach each other, as can be seen from the (T,x) 
projection in Fig. 10. At the temperature of the UCE a critical phase l1 = 12 is in equilibrium with a 
vapour phase and, as a consequence, the gll and g12 regions join in one two-phase region gl, which shows 
a horizontal point of inflection at the l1 = l2 critical point. At higher temperatures the gl region and the 1112 
region are separated by a region of a homogeneous liquid phase. At even higher temperatures the 1112 
region shifts to higher pressures and the gl region may detach on the left hand side, as shown in Fig. 9a. 
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X 

I g  I 

X 

I I 
X X 

Fig. 11. Class 1'1 fluid phase behaviour. (PJ) sections at constant T. (a, b) T<T(g(ll = 12)). (c) T = T(g(1l = 12). (d) 
T(g(1, = l2)<T<T(g = l)x=o) See Fig. 10. 

Class 2' phase behaviour 

The phase behaviour class 2' systems (type V according to the classification of van Konynenburg & Scott)is is 
represented by (P,T) and (T,x) projections given in Fig. 12. Characteristic for this type of phase behaviour is a 
three-phase equilibrium g1112 with a LCE g(ll = 12) and a UCE (g = 11)12, and a discontinuous critical curve. 

T 

Fig. 12. Combined (P,T) and (TJ )  projections of class 2' fluid phase behaviour. : vapour-pressure curves; : critical 
curve; : three-phase curve; 0: pure component critical point; A, V: upper and lower critical endpoints. 
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The first branch of the critical curve connects the critical point of the more volatile component with the 
UCE. The second branch runs from the LCE to the critical point of the less volatile component. 
Examples of class 2' systems are the systems methane + n-hexane (Davenport & Rowlinson, 1963) and 
ethane + n-eicosane (Kohn et al., 1966), although there are reasons to believe that these systems are in 
reality class 2'1 systems (see section on class 2'1 systems). 

In Fig. 13 four (PJ) sections are shown at temperatures T(g(ll = 12))1TIT((g = 11)12). At lower and at 
higher temperatures the (P,x)  sections are comparable with those of class 1' systems. In Figure 13b a 
(PJ) section is shown at a temperature between the LCE and the critical point of the more volatile 
component. This (PJ) section is comparable with Fig. I la .  On lowering the temperature, the 
composition of the l1 phase and of the l2 phase of the g1112 equilibrium approach each other and the 
pressure of the 1, = l2 critical point approaches the three-phase pressure. At the temperature of the LCE 
(see Fig. 13a) the l1 and l2 points of the three-phase equilibrium and the critical point l1 = l2 coincide. The 
1112 two-phase region disappears and the gll and g12 two-phase regions join in one gl two-phase region. 
The gl region shows a horizontal point of inflection at the l1 = l2 critical point. At higher temperatures 
than the temperature of Fig. 13b the gll region will detach from the axis x = 0 (Fig. 13c) and at even 
higher temperatures the composition of the l1 phase and of the vapour phase of the g1112 equilibrium 
approach each other. At the temperature of the UCE the l1 and g points of the three-phase equilibrium 
and the g = llcritical point coincide. See Figure 13d. At this temperature the gll two-phase region 
disappears and the g12 and 1112 two-phase regions again join in one gl two-phase region. Now the gl 
region shows a horizontal point of inflection at the g = l1 critical point. 

X 

I 

L 
X 

X 

X 

Fig. 13. Class 2' fluid phase behaviour fluid. (PJ) sections at constant T. (a) T = T(L = L V). (b) 
T(g(1, = 12))<T<T(g = l), = o. (c) T<T(g = l), = o<T<T((g = 11)12). (d) T = T((g = 11)12). See Fig. 12. 

Class 2'1 phase behaviour 

The combined (P,Z') and ( T J )  projections of a class 2'1 system (type IV according to the classification of 
van Konynenburg & Scott) is given in Fig. 14. In this type of phase behaviour the three-phase 
equilibrium g1112 consist of two branches. The low-temperature branch shows a UCE g(ll = 12) and is 
comparable with the g1112 equilibrium that is found in class 1'1 systems. The high-temperature branch 
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shows a LCE g(ll = 1,) and a UCE (g = 11)12 and is comparable with the g1112 equilibrium that is found in 
class 2' systems. Not many binary class 2'1 systems are known, but for similar reasons as mentioned for 
class 1'1 phase behaviour it is likely that many systems that are supposed to show class 2' phase 
behaviour in fact are of class 2'1 and the low-temperature branch of the gll12 equilibrium is masked by 
the solidification surface. The system carbon dioxide + tridecane (Enick et al., 1985; Fall & Luks, 1985) 
is an example of a system showing class 2'1 fluid phase behaviour. 

T 

Fig. 14. Combined (P,T) and (T,x)  projections of class 2'1 fluid phase behaviour. ~ : vapour-pressure 
curves; -: critical curves; - - - - - - -: three-phase curves; 0: pure component critical point; A, V: 
upper and lower critical endpoints. 

Since class 1'1 and class 2' phase behaviour is combined in class 2'1 phase behaviour, the (P,x)  
sections at low temperatures are those of class 1'1 (Fig. 11) and at high temperature those of class 2' 
(Fig. 13). However phase diagrams at constant temperature can show two separated regions of 
liquid-liquid immiscibility. An example of a (T,x) section is given in Fig. 15. At this pressure the 
high-temperature branch of the gll12 curve is intersected in the P,T-projection. The (T,x) section shows 
three critical points. At low temperature a critical point 11 = 12 is the maximum temperature of a 1112 
two-phase region. This kind of critical point is called upper critical solution temperature (UC,). The 
other 1112 critical point is the minimum temperature of a second 1112 two-phase region, which ends at 
higher temperature at the 81112 equilibrium. This critical point is called a lower critical solution 
temperature (LCp). The third critical point is a vapour-liquid critical point g = 12. 

I 

X 

Fig. 15. Class 2'Z fluid phase behaviour. (T,x) section at constant P for: P(LCE)dJdJ(g = 1),=,,. See Fig. 14. 
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T 

Fig. 16. Combined (P ,Q  and (TJ) projections of class 1'1' fluid phase behaviour. - :vapour-pressure 
curves; -: critical curves; - - - - - - -: three-phase curves; 0: pure component critical point; A: upper 
critical endpoints. 

Class lc lZphase behaviour 

In class 1'1' phase behaviour (type I11 according to the classification of van Konynenburg & Scott) the 
two branches of the glllz equilibrium of class 2'1 phase behaviour are combined, and also two of the three 
branches of the critical curve that are found for class 2'1. Only the UCE (g = 11)12 remains. The (P,T) and 
(T,x) projection of class 1'1' phase behaviour are given in Fig. 16. In the example shown the branch of 
the critical curve that runs from high pressure to the critical point of the less volatile component shows a 
pressure minimum and a pressure maximum. An example of this behaviour is found in the system 
propane + triphenylmethane (de Roo et al., 1995). This branch of the critical c m e  can also show a 
temperature minimum combined with a pressure minimum and a pressure maximum(i.e. carbon dioxide 
+ tetradecane (Hottovy et al., 1981), or only a temperature minimum (i.e. propane + water (de Loos et 
al., 1980) or can have a positive value of (dP/dT) in the critical point of the less volatile component (i.e., 
He + Xe (de Swaan Arons & Diepen, 1966)). See Fig. 17. Since in the latter two types of systems 
two-phase equilibria can exist at higher temperatures than the critical temperature of the less volatile 
component these equilibria are often referred to as gas-gas equilibria. The system He + Xe is said to 
show gas-gas equilibria of the first kind (no minimum critical temperature), the system propane + water 
gas-gas equilibria of the second kind (the critical line passes through a minimum in temperature). 
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Fig. 17. Combined (P,Tj and ( T J )  projections of class 1‘1’ fluid phase behaviour type I11 fluid phase behaviour: (a) 
Critical curve with a pressure maximum, a pressure minimum and a temperature minimum; (b) Critical curve with a 
temperature minimum (gas-gas equilibria of the second kind); (c) Critical curve without a pressure maximum and a 
temperature minimum (gas-gas equilibria of the first kind). ~ : vapour-pressure curves; -. . critical 
curves; - - - - - - -: three-phase curves; 0:  pure component critical point; A: upper critical endpoints. 

At temperatures lower than the UCE (g = 1J2, the (P,x)  sections corresponding to Fig. 16 resemble 
those in Fig. 13b. At the temperature of the UCE, a (P ,x )  section such as that in Fig. 13c is found. In Fig. 
18 some (PJ) sections of a system showing gas-gas equilibria of the second kind are shown, in Fig. 19 
( P J )  sections of a system showing gas-gas equilibria of the first kind. 

X X X 

Fig, 18. Gas-gas equilibria of the second kind. (PJ) sections at constant T. (a) T(UCE)<T<Tmi,(g = 12). (b) 
Tmj,(g = lz)<T<T(g = l)x= 1. (c) T>T(g = l)x= 1. 

l g  
X 

Fig. 19. Gas-gas equilibria of the first kind. (PJ) sections at constant T a, T = T(g = l), = 1; T(a)<T(b)<T(c). 
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Class IPn phase behaviour 

Class lPn phase behaviour (type VI according to the classification of van Konynenburg & Scott) is found 
in systems with specific chemical interactions, i.e., water + 2-butoxyethanol (Ellis, 1967) In the (P,T) 
projection a three phase equilibrium gI112 is found with a LCE g(ll = 12) and a UCE g(ll = 12). In Figure 
20 the LCE and UCE are connected by a l1 = l2 critical curve which shows a pressure maximum. Another 
possibility is the existence of a second 11 = 12 critical curve at high pressure with a pressure minimum. 
This phenomenon is called high pressure immiscibility (class l'nu). Also the low-pressure immiscibility 
region and the high-pressure immiscibility region can be combined in one uninterrupted 1112 region 
(Schneider, 1978). These systems are of class 1% 

At temperatures between the temperature of the LCE and of the UCE the (P,x)  sections which 
correspond to Fig. 20 resemble those of Fig. 13b. At the temperature of the LCE and the UCE, the 
P,x-section is like that in Figure 13a. A typical (T,x) section is shown in Fig. 21. At the pressure of this 
( T J )  section two separate two-phase regions gl and 1112 are found. The 1112 two-phase region is a closed 
loop with a LCp and a UCp. 

Fig. 20. Combined ( P , q  and ( T J )  projections of class lPn fluid phase behaviour. ~ : vapour-pressure 
curves; - : critical curves; - - - - - - -: three-phase curve; 0: pure component critical point; A, V: 
upper and lower critical endpoints. 

X 

Fig. 21. Class 1'n fluid phase behaviour. ( T J )  section at P(UCE)<P<P(g = l), o. 
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