From phosphatriafulvenes to phosphabenzenes and stable six-membered phosphaallenes*

Michael A. Hofmann, Uwe Bergsträßer, and Manfred Regitz[†]

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany

Abstract: Phosphatriafulvenes readily react with kinetically stabilized phosphaalkynes. Depending on the substituent at the phosphorus atom of the phosphatriafulvene, different sixmembered phosphaheterocycles can be isolated. On the one hand, 1,3-diphosphabenzenes are formed, which can be isomerized thermally to diphospha dewarbenzenes or complexed by Cr(CO)₃. On the other hand, 1,3-diphosphaisobenzenes are thus available. They are converted to bicyclic six-membered allenes via 1,3-dipolar cycloaddition to the P/C double bond.

INTRODUCTION

Phosphatriafulvenes 1, which are known for more than ten years now, constitute a unique class of phosphaalkenes with inverse electron density [2]. This was shown chemically by reaction with nucleophiles that attack the three-membered ring [3], whereas the phosphorus atom is nucleophilic [2,4]. Furthermore, the inverse electron distribution is underlined by a single crystal structure analysis of one phosphatriafulvene where the P/C double bond is markedly stretched [5] and by *ab initio* calculations [2].

While reactions of the title compounds 1 with alkynes [3,4] and phosphaalkenes [5] are known, the reactivity towards kinetically stabilized phosphaalkynes has been much less studied so far [6].

SYNTHESIS OF 1,3-DIPHOSPHABENZENES

Heating the phosphatriafulvene **1a** in the presence of a stoichiometric amount of the phosphaalkynes **2** yields the 1,3-diphosphabenzenes **3** (Fig. 1). The latter are isolated as yellow oils in good yield.

Fig. 1 Synthesis and valence isomerization of the 1,3-diphosphabenzenes 3.

^{*}Lecture presented at the 13th International Conference on Organic Synthesis (ICOS-13), Warsaw, Poland, 1–5 July 2000 [1]. Other presentations are published in this issue, pp. 1577–1797.

[†]Corresponding author

For the derivative $\mathbf{3}$ (R = tBu) it is demonstrated that for this substitution pattern the diphospha dewarbenzenes $\mathbf{4}$ are the thermodynamically more stable valence isomers. The isomeric compounds $\mathbf{4a}$ and $\mathbf{4b}$ are obtained as an inseparable mixture ($\mathbf{4a}$: $\mathbf{4b}$ = 5:2) upon heating the appropriate diphosphabenzene to 120 °C.

COMPLEX BEHAVIOR OF 1,3-DIPHOSPHABENZENES

Complexation of the diphosphabenzenes **3** is successful using Kündig's reagent [7], the chromium naphthalene complex **5** (Fig. 2). The resulting complexes **6** are rather stable compounds and can be isolated by column chromatography as black crystals. Whereas a typical high-field shift of the phosphorus and carbon resonances is found in the NMR spectra compared to the starting material **3**, one carbon atom experiences a dramatic low-field shift. This deshielding effect can be explained by a formal positive charge at the carbon atom, leaving the chromium atom formally negatively charged.

A single crystal structure analysis of a derivative of $\mathbf{6}$ (R = tBu) confirms a strongly distorted η^5 complex, with the six-membered ring being in a boat-like conformation. This is not necessarily due to the complexation, as it is well known that arenes bearing sterically demanding substituents also adopt a boat-like conformation [8]. The distance between chromium and the carbon atom bearing the positive charge is extremely lengthened so that hardly any binding interaction can be discussed.

SYNTHESIS AND DIMERIZATION OF THE PHOSPHATRIAFULVENE 1B

A procedure for the preparation of the triafulvene **1b** bearing three *tert*-butyl groups has been described recently [6]. Whereas the usual Peterson-like olefination reaction for the synthesis of phosphatriafulvenes [2] is unsuccessful, **1b** is easily synthesized starting from cyclopropenone **7** and phosphine **8** in the presence of the Lewis acid boron trifluoride (Fig. 3).

Compliance with the exact protocol is crucial, as **1b** is prone to dimerization. In accord with the polarity of the phosphatriafulvene a formal [3+3] cycloaddition results in the formation of the tricycle **9** (Fig. 3) [9]. The structure of the surprisingly stable double *anti* Bredt compound **9** is confirmed unequivocally by a single crystal structure analysis. Thereby, a highly strained and distorted cyclopropene moiety is found. The C/C double bonds of **9**, which possess a twofold axis of rotation in solution, are still planar. The individual angles around the sp² carbon atoms of up to 168° exhibit remarkable deviations from the ideal values.

SYNTHESIS OF PHOSPHACYCLOHEXA-1,2-DIENES

A thermally induced reaction between the phosphatriafulvene 1b and various phosphaalkynes 2 leads to the formation of diphosphaisobenzenes 10 (Fig. 4) [6]. Compounds 10 are isolated by bulb-to-bulb distillation as orange-red oil or as a solid (R = IAd) and are surprisingly stable in the absence of moisture and air [10].

Fig. 2 Complexation of the 1,3-diphosphabenzenes 3.

Fig. 3 Synthesis and dimerization of the phosphatriafulvene 1b.

Fig. 4 Synthesis of the six-membered allenes 10 and 12.

Their constitution can be easily deduced by spectroscopic means. The allene bands in the IR spectra of 10 between 1835 and 1866 cm⁻¹, as well as the 13 C NMR resonances of the central allene carbons between $\delta = 198$ and 203, are particularly characteristic.

The isobenzenes **10** are converted to bicyclic allenes **12** with mesityl nitrile oxide **11** at room temperature (Fig. 4). The [3+2] cycloaddition exclusively takes place at the more reactive P/C double bond in a highly diastereoselective manner. The strained C/C double bonds seem to be kinetically stabilized very well. The regioselectivity of the reaction is in agreement with that of [3+2] cycloadditions of nitrile oxides onto P/C double and triple bonds [11].

The structure and relative stereochemistry of 12 (R = tBu) was confirmed by single crystal structure analysis, thereby proving that of 10. The 1,2-diene moiety is significantly bent: the angle of about 156° is markedly smaller than found for the other stable 1,2-dienes [12]. The same holds true for the dihedral angles, which show marked deviations from the ideal value of 90° .

© 2000 IUPAC, Pure and Applied Chemistry 72, 1769–1772

REFERENCES

- 1. Organophosphorus Compounds Part 156, for Part 155, *c.f.* J. Renner, U. Bergsträßer, P. Binger, M. Regitz. *Eur. J. Inorg. Chem.* 2337–2340 (2000).
- 2. E. Fuchs, B. Breit, H. Heydt, W. Schoeller, T. Busch, C. Krüger, P. Betz, M. Regitz. *Chem. Ber.* **124**, 2843–2855 (1991).
- 3. E. Fuchs, F. Krebs, H. Heydt, M. Regitz. Tetrahedron 50, 759–774 (1994).
- 4. E. Fuchs, B. Breit, U. Bergsträßer, J. Hoffmann, H. Heydt, M. Regitz. *Synthesis* 1099–1107 (1991).
- 5. B. Breit, H. Memmesheimer, R. Boese, M. Regitz. Chem. Ber. 35, 729-732 (1992).
- 6. M. A. Hofmann, U. Bergsträßer, G. J. Reiß, L. Nyulászi, M. Regitz. *Angew. Chem.* 112, 1318–1320 (2000); *Angew. Chem. Int. Ed.* 39, 1261–1263 (2000).
- 7. V. Desobry, E. P. Kündig. Helv. Chim. Acta 64, 1288–1297 (1981).
- 8. G. Maas, J. Fink, H. Wingert, K. Blatter, M. Regitz. Chem. Ber. 120, 819-824 (1987).
- 9. An analogous reaction of methylenecyclopropene is described by W. E. Billups, C. Gesenberg, R. Cole. *Tetrahedron Lett.* **38**, 1115–1116 (1997).
- 10. For an overview on isobenzenes, see ref. 6.
- 11. M. Regitz. In *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, M. Regitz and O. Scherer, pp. 74–75, Thieme, Stuttgart (1990).
- 12. F. Hojo, W. Ando. Synlett 880–890 (1995) and references cited herein.