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Thermodynamics of structured fluids.
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Abstract: At liquid-like densities, molecules of complex fluids can assume a variety of struc-
tures (or positions) in space; when the molecules contain many atoms as, for example, in
polymers, that variety becomes very large. Further, when confined to a narrow space, it is
possible to achieve structures that are not normally observed. Thanks to recent advances in
statistical mechanics and molecular physics, and thanks to increasingly fast computers, it is
now possible to calculate a fluid’s structure, that is, the positions of molecules at equilibrium
under given conditions. Calculation of fluid structure is useful because thermodynamic prop-
erties depend strongly on that structure, leading to possible applications for new materials.
Three examples illustrate some recent developments; each example is presented only
schematically (with a minimum of equations) to indicate the physical basis of the mathe-
matical description. The first example considers the effect of branching on self-assembly
(micellization) of copolymers (with possible long-range applications in medicine). The sec-
ond and third examples consider the effect of confinement on fluid structure: first, crystal-
lization in a narrow, confined space to produce a desired crystal structure (with possible
applications for light-emitting diodes) and second, suppression of micellization of a diblock
copolymer in a thin film (with possible application in lithography). Whenever possible, the-
oretical calculations are compared with experimental results.

INTRODUCTION

Since the pioneering work of Gibbs about 125 years ago, chemical thermodynamics has generated a
vast literature, dozens of textbooks, and thousands of articles in many languages. The overwhelming
majority of these publications is concerned with experimental or theoretical studies of relatively simple
substances such as hydrocarbons, petrochemicals, salts, metals, and so on; historically, much less atten-
tion has been given to the thermodynamic properties of complex materials like gels, biomacromole-
cules, micelles, colloids, block copolymers, and similar substances that are often called soft materials.
While such materials abound in nature and technology, application of chemical thermodynamics to soft
materials has been delayed because of experimental difficulties and because, until recently, there were
few theoretical models available for describing assemblies of complicated molecules.

To utilize these evolving theoretical models, we require statistical mechanics. About 50 years ago,
the status of statistical mechanics was well-summarized by a Nobel laureate, physicist Eugene Wigner:

“With thermodynamics, we can calculate many things—roughly.
With kinetic theory, we can calculate a few things—approximately.
With statistical mechanics, we can calculate (almost) nothing—exactly”.

*Plenary lecture presented at the 16th IUPAC Conference on Chemical Thermodynamics (ICCT-2000), Halifax, Nova Scotia,
Canada, 6–11 August 2000. Other presentations are published in this issue, pp. 1799–2082. 



That was two generations ago. Now, thanks to much progress in theoretical physical chemistry
and to the ever-rising power of computers, Wigner’s pessimistic comment is no longer valid. Statistical
mechanics is now not only applicable to a wide variety of relatively simple substances but, in addition,
we can clearly discern a new era where statistical mechanics can be used to describe the properties of
those complex soft materials found in nature or synthesized by clever experimental scientists for high
technology. Three examples illustrate this coming era. They are chosen to indicate some areas of cur-
rent research and to encourage young chemical thermodynamicists to give attention to new problems,
toward contributing to the development of the emerging science of soft materials. In choosing these
examples, not from my own work but from the work of others that I admire, I resemble the rooster who
showed an ostrich egg to the hen and said, “I am not complaining. I only want to show you what’s pos-
sible.”

FORMATION OF AN ASSEMBLED STRUCTURE WITH BRANCHED (COMB) RANDOM
COPOLYMERS 

It is common knowledge that amphiphilic molecules can aggregate to form micelles. While the litera-
ture is rich with studies on the properties of micelles, nearly all such studies are concerned with
amphiphilic molecules of ordinary molecular size in aqueous systems. Much less attention has been
given to polymeric amphiphiles, but regardless of molecular size, efforts to control micelle properties
have focused on the chemical identities of the amphiphile’s building blocks (e.g., carboxyl, cyano,
chloro, alkyl, cycloalkyl, etc.). However, recent studies [1] have shown that micelle properties formed
by random copolymers in solution can be controlled not by changing the identity of the building blocks
but by adjusting the copolymer’s architecture, for example, by the geometric arrangement of the two (or
more) building blocks that form the copolymer. Subtle variations in copolymer architecture can have a
large effect on micelle formation because such subtle variations can produce a crucial change in con-
formational entropy, for example, the entropy of the assembled structure (micelle) relative to that of the
unassembled (free) copolymers in solution.

To fix ideas, consider a comb polymer where the backbone is polybutadiene (PB) and the branch-
es are polystyrene (PS), dissolved in toluene. For a random graft copolymer (RGC), important variables
are N, the number of segments in the backbone; M, the number of segments in each branch; and P, the
number of branches per molecule. All branches have the same M, and all copolymer molecules have the
same N, M, and P.

Studies with homopolymers in toluene have shown that the Flory parameter χ for polystyrene is
slightly larger than that for polyisobutylene, indicating that the affinity of toluene for the copolymer’s
backbone is slightly higher than that for the copolymer’s branches. This small difference in affinity,
however, is sufficient for micellization of the copolymer such that the PS branches form the micelle’s
core while the PB backbone forms the micelle’s periphery called the corona, as shown schematically at
the top of Fig. 1.

Using a field theory (too complicated for summary here), keeping N and M constant while vary-
ing P, Qi and Chakraborty [2] calculated the volume fraction of RGC in toluene where the solution
becomes unstable (i.e., where a phase transition occurs); this volume fraction is interpreted as close to
the critical micelle concentration (i.e., the concentration of copolymer where micelles are formed).
Figure 2 shows results of this calculation where Flory parameter χ for PB-toluene is set equal to zero
and that for PS-toluene is set equal to either 0.10 or 0.07. The important feature of Fig. 2 is that the crit-
ical volume fraction first decreases and then increases with P, the number of branches per molecule. For
micelle formation, the optimum P is about 7.

We have convincing experimental evidence for micelle formation for these random graft copoly-
mers (RGC) from dynamic light-scattering data reported by Balsara [1], shown in Figs. 3 and 4. The
top part of Fig. 3 shows the time autocorrelation function g(τ) for a dilute solution of the RGC polybu-
tadiene with 10 polystyrene branches. An autocorrelation function in excess of unity indicates an
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Fig. 1 Physical reason for optimum.

Fig. 2 Phase behavior (spinodal) for RGC solutions.
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Fig. 3 Autocorrelation function from dynamic light scattering.

Fig. 4 Hydraulic radius from dynamic light-scattering data.



assembled structure. In the temperature range 16 to 25 °C, g(τ) remains well in excess of unity for about
10–2 seconds; at higher temperatures, g(τ) decreases toward unity at times well below 10–2 seconds.

By contrast, the lower part of Fig. 3 shows qualitatively different results for a RGC with 18
branches per molecule at a somewhat higher concentration in toluene. These data show that the plateau
for g(τ) remains constant, regardless of temperature, for only about 10–4 seconds, two orders of magni-
tude lower than that for copolymers with P = 10.

From scattering theory, and from the Stokes–Einstein equation relating the diffusion coefficient
to the hydraulic radius, these light-scattering data give the hydraulic radius of the diffusing species in
toluene. Figure 4 shows results indicating that 10-branch copolymers form micelles below 25 °C while
18-branch copolymers do not. In these experiments, M and N were held constant (N = 2000; M = 300)
while P was either 10 or 18.

We can at least approximately understand why there is an optimum value for P as summarized in
Fig. 1. When a micellar assembly is formed from RGCs, there is a decrease in entropy (called the
entropy penalty) that must be overcome by a simultaneous decrease in enthalpy. For the micellization
process to proceed, ∆G (micellization) must be negative:

∆G = ∆H – T∆S  < 0

In a solvent that prefers backbone over branches, branches aggregate. When branches aggregate,
the backbone forms a shroud (corona) around the assembled branches, as shown in Fig. 1. If the loops
are long, micellization has little effect on the entropy of the loops; the entropy of the branches is dom-
inant. As P rises, it is increasingly difficult for the branches to form a densely packed structure because
they are restrained by the backbone. Hence, the entropy penalty decreases with rising P.

However, as P rises more, the entropy of the corona loops becomes increasingly important
because the freedom of loop segments to move declines as the loop length decreases. For large P, there-
fore, the loop entropy becomes dominant and the entropy penalty increases with rising P.

These initial results suggest further studies. For possible medical applications, a more interesting
RGC is one where the backbone is hydrophobic and the branches are hydrophilic. Such RGCs now
under investigation by Hagan, Chakraborty, and Balsara (University of California, Berkeley), may form
cylindrical micelles with top and side views as shown in Fig. 5. These cylindrical micelles could, per-
haps, be used for a drug-delivery device by forming nanotubes that could transport a hydrophilic solute
(i.e., a drug) through a membrane where hydrophilic (light gray) layers alternate with hydrophobic
(white) layers as shown in Fig. 6.

On the left side of Fig. 6, the RGC, soluble in the hydrophobic layer, is not assembled. When the
concentration of the RGC reaches the critical micelle concentration, a micelle is formed with (perhaps)
cylindrical shape. When activated by some switch (Fig. 7), this micelle could form a pore permitting a
hydrophilic drug to pass from one hydrophilic layer to another.

This potential device is still in its infancy; for its development, much experimental work lies
ahead. However, the experimental program for design can be much aided by molecular–thermodynamic
calculations. Such calculations provide guidance to indicate the most promising RGC for achieving the
desired micelle properties.

It is not necessary here to present details of such calculations; however, the general idea is briefly
outlined in Fig. 8 where the Helmholtz energy F of the RGC in the hydrophobic phase is given as the
sum of three contributions. The most important of these is F(1), the Helmholtz energy of the micelle rel-
ative to the indicated reference state. Some important factors contributing to F(1) are shown in Fig. 9.

The Helmholtz energy of the system is minimized with respect to the most important variables
identified in Fig. 8. At the minimum, the values of these variables are then determined.

The calculations indicated here are far from trivial and while much is known, much further theo-
retical work is required to obtain reliable results. While these calculations by themselves are not suffi-
cient for supplying the final answers required for design, they facilitate interpolation and extrapolation
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Fig. 5 Formation of micelles with random graft copolymers, as suggested by Hagan, Chakraborty, and Balsara.

Fig. 6 Synthetic channel (pore) for transport through a bilayer.
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Fig. 7 Synthetic channel (pore) for transport of a hydrophilic solute (drug) through a bilayer.

Fig. 8 Helmholtz energy of a micellar system containing copolymer and solvent.
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Fig. 9 Key function F(1) for minimizing the Helmholtz energy.

Fig. 10Programmed assembly toward colloidal crystals. Photonic-band-gap materials.



of experimental results, and they provide first estimates of where to find the optimum conditions for a
particular application.

It was Clausius, one of the founders of thermodynamics, who said “Nothing is more practical than
a good theory”.

This first example considered chain molecules of complex size and shape; the interesting phe-
nomena arise from flexibility. The second example considers a suspension of spherical particles where
flexibility plays no role at all; instead, the interesting phenomena arise because the suspension is placed
into a severely confined space where the freedom of the particles depends on the extent of confinement.

COLLOID CRYSTALLIZATION IN A CONFINED SPACE

Colloidal crystals are of potential interest as new catalysts or catalyst supports and as membranes for
separations. However, perhaps the most important potential use for these crystals is as components in
optical circuits and as light-emitting diodes.

The optical properties of colloidal crystals depend not only on the chemical nature of the colloidal
particles but also on their geometric arrangement in space (i.e., on crystal structure). To illustrate, the
left side of Fig. 10 shows a black-and-white picture of a piece of jewelry, an opal mounted on a ring.
Opal is a naturally occurring colloidal crystal; the opal’s variety of colors follows from an assembly of
slightly different crystal structures.

For application in optical circuits, electrical engineers seek a crystal that is a photonic-gap-band
material as indicated on the right side of Fig. 10. Knowing the dielectric constant of the particles that
comprise the crystal, and knowing the geometry (structure) of the crystal, a set of solutions can be
obtained to the Maxwell equations for electromagnetic radiation; these solutions give light frequency
as a function of wave vector. Desired is a crystal where all possible solutions to Maxwell’s equations
do not enter a region of frequency-wave number space, the so-called band gap shown in Fig. 10. While
the search for a suitable band-gap crystal is necessarily experimental, that search can be much aided by
statistical thermodynamics.

Preparation of a photonic-band-gap colloidal crystal is generally not possible under ordinary con-
ditions. One possible way to achieve the desired structure is to place the colloidal solution between two
solid walls; the two walls are brought very close to each other such that the separation H between the
plates is of the order of σ, the diameter of the colloidal particles (i.e., the ratio H/σ should be in the
range 1–10). Under such close confinement, it is possible to achieve crystal structures that cannot be
attained under normal conditions. For a typical colloidal particle, σ = 100 nm.

Statistical thermodynamics can be used to generate a phase diagram for colloids under a close-
confinement restraint. This phase diagram gives the boundaries of the fluid phase and of several possi-
ble crystal phases.

Consider a colloid between two horizontal solid walls. Omitting ideal-gas contributions, the
Helmholtz energy F of the fluid phase is given by

(1)

where A is the area of the wall and z is the coordinate perpendicular to the wall; ρ(z) is the density pro-
file of the colloid. Lower case f denotes specific Helmholtz energy (i.e., Helmholtz energy per particle).
Because the walls exercise a strong influence on the free volume available to the colloid particles, the
colloid’s density is not everywhere the same; indeed, it is precisely because of the wall effect that it is
possible to achieve crystal structures that are not attained at normal conditions.

In eq. 1, specific Helmholtz energy f is that of a homogeneous fluid (no wall effect) at some suit-
ably weighted average density ρ–. (A variety of proposals, not discussed here, have been made for eval-
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uating ρ–.) The specific Helmholtz energy f(ρ–) is determined from properties of the bulk (not confined)
fluid.

The density profile is determined by an equilibrium condition; it is that profile which satisfies

(2)

where the left side of eq. 2 is a functional derivative. After the density profile has been established, the
chemical potential of the fluid µ is found from ordinary (not functional) differentiation:

(3)

where N is the number of particles and V is the volume of the confined colloid.
For a crystal phase, the chemical potential (omitting ideal-gas contributions) is found from cell

theory where a particle is confined to a cell formed by nearest-neighbor particles. In cell theory, chem-
ical potential µ is determined by free volume Vf per particle:

(4)

To calculate free volume, we assume a particular crystal structure, and we use a pertinent two-
body potential for the colloidal particles; for most purposes (if the particles are not charged), a hard-
sphere potential is satisfactory.

For any given fluid height H, number of particles N and volume V, the stable phase, liquid or
(assumed) crystal, is the one with the lowest chemical potential µ.

Figure 11 shows five crystal structures. The lower right side, shows a phase diagram calculated
with statistical thermodynamics; the vertical axis gives the normalized distance between plates, and the
horizontal axis gives the reduced density. The hatched areas show simultaneous existence of two 
phases. The forbidden region indicates that region where (because of the very high density) neither fluid
nor crystal can exist.
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Fig. 11Phase diagram for hard spheres confined between two walls. In (b), the three molecules along a vertical
line in the center are in a plane slightly above that of the other molecules. 



The lower left side shows the same phase diagram obtained from molecular simulations. The two
phase diagrams are in essential agreement although there are some differences, especially in the sizes
of the two-phase regions. These diagrams are from Schmidt and Löwen [3].

Figure 12 shows some experimental results for a colloid, obtained by Murray et al. [4]. The hor-
izontal axis is the reduced fluid height; σ is the particle diameter. The vertical axis is (essentially) the
cube root of the reduced volume. These data for monodisperse polystrene spheres in water were
obtained by direct observation with a powerful microscope. In this diagram the hatched areas are not
two-phase regions; they are used only as a guide to the eye. However, the close-hatched region between
structures 1� and 2� denotes a two-phase region called “hopping”; � and � indicate type of struc-
ture, while the preceding number indicates the number of colloidal-particle layers in the crystal.
Statistical–thermodynamic calculations can reproduce this experimental phase diagram with good
agreement. 

For charged particles, calculations are more realistic when a Yukawa potential is added as a per-
turbation to the hard-sphere potential as indicated in Fig. 13. In the Yukawa potential, interaction length
κ–1 is similar to the Debye length in the familiar Derjaguin–Landau–Verwey–Overbeek (DLVO) theo-
ry for colloids. A calculated phase diagram, shown on the left in Fig. 13, gives phase boundaries for the
fluid phase, for two crystal phases, and for a glassy phase.
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Fig. 12Observed phase diagram for a confined colloidal solution.



In the search for a photonic-band-gap material, statistical thermodynamics is useful for deter-
mining what crystal structures may be obtained when crystallization occurs under a geometric restraint.

J. M. PRAUSNITZ

© 2000 IUPAC, Pure and Applied Chemistry 72, 1819–1834

1830

Fig. 13Phase diagram for a charged colloid calculated with a Yukawa potential. BCC=body-centered cubic.
FCC=face-centered cubic.

Fig. 14Possible pattern formation in a polymer film.



Using the Maxwell equations, it is then possible to determine if that structure has the desired band-gap
property.

As in the previous example, statistical thermodynamics cannot replace experimental effort but it
can significantly reduce that effort by providing guidance to the experimentalist.

The first example serves to illustrate the effect of molecular flexibility on micellization of a graft
comb copolymer. The second example serves to illustrate the effect of confinement on the phase behav-
ior of a suspension of spherical particles where flexibility plays no role. In the final third example, we
consider a combination: suppression of micellization of a flexible block copolymer in a confined thin
film supported by a wall on one side and a vapor-liquid interface on the other.

PROPERTIES OF A THIN FILM OF BLOCK COPOLYMER

For possible use in lithography, we want a thin polymer film that can give a pattern on a solid surface.
A film of a homopolymer or a random copolymer will not give a pattern. A mixture of two polymers
with microdomains could give a pattern but because, with rare exceptions, two polymers are almost
always immiscible, a stable mixture cannot be made without addition of a small amount of a third com-
ponent (compatibilizer). For polymer A and polymer B, a suitable third component is a two-block
copolymer A⋅ ⋅ ⋅ B⋅ ⋅ ⋅ ⋅ . Only a very small amount of block copolymer would be needed to stabilize
the A-B mixture because in continuous phase B, a small domain of A is stabilized by the block copoly-
mer at the domain interface where the A part of the block copolymer is soluble in domain A and the B
part of the block copolymer is soluble in continuous phase B. Regrettably, this reasonable idea is not
practical because, instead of remaining at the domain interface, the block-copolymer molecules prefer
to form a micelle. When that occurs, the mixture of polymers A and B is unstable and splits into one
A-rich phase and one B-rich phase. These ideas are illustrated in Fig. 14.

However, if the A-B mixture, with a small amount of A⋅ ⋅ ⋅ B⋅ ⋅ ⋅ ⋅ block copolymer, is confined
to a thin film, micellization can be suppressed as indicated in Fig. 15. The left side (I) shows a polymer
film where the film thickness h is sufficiently large to allow micellization of the block copolymer; phas-
es A and B are not miscible. The right side (II) shows a thin film with a smaller thickness h such that
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Fig. 15Suppression of micellization due to a wall.



micellization cannot occur. The block copolymer stabilizes the (shaded) domain A in continuous phase
B. The task of statistical mechanics is to determine the critical film thickness H such that for h > H, FI
< FII (where F is Helmholtz energy) and for h < H, FI > FII. To determine that critical film thickness,
we require F(h). Nature gives us the state with the lower Helmholtz energy. For a given h, does State I
or State II have the lower Helmholtz energy?

It is not necessary here to present in detail how the calculation is made; a summary is sufficient.
Per unit area of the supporting wall, the Helmholtz energy of the mixture, relative to those of the

pure components, is given by

(5)

where z is the coordinate perpendicular to the wall, χ is the Flory interaction parameter for the A-B pair
and Φ denotes volume fraction. Because the wall influences the properties of the mixture, volume frac-
tions Φ A and Φ B depend on z; that dependence is called the volume-fraction profile. The brackets in
eq. 5 indicate a local average; at position z, the volume fraction of A is Φ A(z). The average volume frac-
tion of B for a differential volume of height de in the immediate neighborhood of A divided by dz is
given by < Φ B(z) >.

The most important quantity, Ω(h), is the configurational factor that describes the number of pos-
sible configurations of chains A, B and A⋅ ⋅ ⋅ B⋅ ⋅ ⋅ ⋅ for a film of height h with density profile Φ A(z).
A lattice theory can be used to calculate this combinatorial factor for a given volume-fraction profile
and for a fixed h. This is a difficult (but possible) calculation because the volume-fraction profile and
the combinatorial factor must be determined simultaneously using a self-consistent lattice theory where
each lattice point is occupied by one polymer segment. Here, “self-consistent” means that the correct
combinatorial factor and volume-fraction profile are those that correspond to a global minimum of the
Helmholtz energy.
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Fig. 16Critical micelle concentration depends on film thickness.



Figure 16 shows illustrative calculations performed by Zhu et al. [5]. The horizontal axis is the
dimensionless film height. The vertical axis gives the critical micelle concentration in the film normal-
ized by that in the bulk phase. Two calculations are shown; one is for a symmetric block copolymer with
250 segments of A and 250 segments of B; the other is for an asymmetric block copolymer A250-B500.

For dimensionless film heights below about 2.5, the ratio on the vertical axis is larger than unity.
For these thin films, the permissible concentration of block copolymer may be sufficiently large to sta-
bilize domains of A in a continuous B phase.

Finally, Fig. 17 shows some experimental results from Zhu [4] for mixtures of PS and polymethyl
methacrylate (PMMA). Shown on the left is a scanning-force microscopy image for a film height above
the critical height H while that on the right is for a film height below H. The picture on the left indi-
cates undesired separated phases of A and B while that on the right indicates desired microdomains of
A in continuous B. These microdomains may be useful for lithography. The bottom picture gives a
three-dimensional image corresponding to the picture on the right. 

As briefly outlined here, theoretical calculation of critical film thickness H can provide a useful
guide for the experimentalist.

CONCLUSION

The examples selected here were chosen to give the flavor of a major frontier of modern chemical ther-
modynamics. While creation and understanding of soft materials depend primarily on experimental sci-
ence, statistical mechanics is now able to provide guidance toward interpreting experimental results and
toward reducing experimental effort. While molecular–thermodynamic models should never be identi-
fied as true reality, they are useful for suggesting what experimental work is most likely to lead to a suc-
cessful result. At this time, application of hard science to soft materials is still in an early stage but there
is good reason to expect that, thanks to the creative efforts of dedicated researchers, such application is
likely to grow dramatically in the near future.
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Fig. 17Microscopic images for mixtures of polystyrene and polymethylmethacrylate with a small amount of
diblock copolymer.
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