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Materials in thermodynamic potential gradients*

M. Martin‡
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Abstract: In materials that are exposed to thermodynamic potential gradients (i.e., gradients
of chemical potentials, electrical potential, temperature, or pressure), transport processes of
the mobile components occur. These transport processes and the coupling between different
processes are not only of fundamental interest, but are also the origin of degradation
processes, such as kinetic demixing and decomposition and changes in the morphology of the
material, all of which are of great practical relevance. Two classes of materials will be con-
sidered: semi- and ion-conducting oxides and ion-conducting halides. In oxides, kinetic
demixing of the cations in a multicomponent oxide and kinetic decomposition of the oxide
under the influence of an applied thermodynamic potential gradient will be considered for
homovalent oxide solid solutions and for heterovalently doped oxides. In ion-conducting
halides, the morphological stability of solid/solid interfaces, which are driven by an external
electrical potential gradient, is studied. Monte Carlo simulations show that the morphologi-
cal stability of the interface is determined by the difference in the ionic conductivities of the
two crystals. 

INTRODUCTION

In many applications, originally homogeneous materials are exposed to a thermodynamic potential gra-
dient, which can be a gradient of temperature, chemical potential of one or more elements, electrical
potential, or uniaxial pressure. Some well-known examples are tarnishing layers on metallic materials
[1,2], which act as corrosion protection, thermal barrier coatings [3] acting as heat shield, solid elec-
trolytes in fuel cells [4], or gas-separation membranes [5]. The applied gradients act as a generalized
thermodynamic force and induce directed fluxes of the mobile components. These fluxes may lead to
three basic degradation phenomena of the materials. 

• The multicomponent material, which was originally chemically homogeneous, becomes chemi-
cally inhomogeneous (so-called kinetic demixing). 

• Formation of new phases might take place, i.e., the initially single-phase material might decom-
pose into new phases (so-called kinetic decomposition). 

• The original morphology of the material might become unstable and a new morphology might be
established (morphological instability).

It must be emphasized that all three phenomena have a purely kinetic origin, i.e., if the applied
thermodynamic potential gradient is removed, the directed fluxes will disappear, and owing to diffusion
processes the material will again become homogeneous, the new phases will disappear, and the new
morphology might become unstable and the old one might be reestablished.
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In this article, some theoretical considerations will be made on the thermodynamics and kinetics
of the above degradation processes, experimental results with model systems will be reported, and im-
plications for applications of materials in thermodynamic potential gradients will be discussed. 

The class of materials will be limited to oxides and halides. Owing to their physical properties,
oxides are used in many technical applications, which have been discussed above. Examples are Al2O3
tarnishing layers on metallic alloys [1], ZrO2 layers in thermal barrier coatings [3], Y2O3-doped ZrO2
(YSZ) being the solid electrolyte and (La,Sr)MnO3–δ being the cathode material in solid oxide fuel cells
(SOFC) [4], or (La,Sr)CrO3–δ in oxygen-separation membranes [5]. Halides, on the other hand, are
well-studied materials with precisely known properties that can be used as simple model systems in ex-
periments [6].

KINETIC DEMIXING

Demixing of oxides in an oxygen potential gradient

At first, we will consider only oxides where the oxygen ions are practically immobile* and which are
good semiconductors (e.g., simple transition-metal oxides such as CoO, NiO, or MnO). For the sake of
simplicity, we will treat only binary oxides, (A1–xBx)O

**. These oxides have four thermodynamic de-
grees of freedom, which are the pressure, p, the temperature, T, the composition, x, and the chemical
potential of oxygen, µO2

= µO2
0 + RTln(pO2

/p0 (pO2
is the oxygen partial pressure and p0 = 1 bar the

standard pressure). If such an oxide is exposed to an oxygen potential gradient (without any gradient in
total pressure, p, or temperature, T), gradients of the chemical potentials of the chemical components A
and B are induced as a consequence of the Gibbs–Duhem relation, xAdµA + xBdµB + xOdµO = 0 (see
Fig. 1a). These thermodynamic forces generate fluxes of the mobile components, which are the cations,
A2+ and B2+, and electronic defects, e.g., electron holes, h•, in a p-type semiconductor. The cations are
assumed to be mobile by means of cation vacancies, V, in the cation sublattice of the binary oxide. Thus,
the fluxes of cations and vacancies are coupled, jA2+ + jB2+ + jV = 0 (see Fig. 1b). If both cations have
different mobilities, the originally homogeneous oxide will become inhomogeneous, as depicted in
Fig. 1b. The faster of the two components A and B becomes enriched at the high-pO2

side, while the
slower component is left behind and becomes enriched at the low-pO2

side.
If the cations and cation vacancies arrive at the crystal surfaces chemical reactions have to take

place. At the high-pO2
side, cations A2+ (and B2+), are oxidized by oxygen, O2(g), from the gas phase,

and cation vacancies, V, electron holes, h•, and new lattice molecules, AO (and BO), of the oxide are
produced. At the low-pO2

side the opposite reactions take place, i.e., cation vacancies and electron holes
are annihilated, and oxide molecules are reduced to cations and oxygen.

(1)

(2)

As a consequence of these reactions, both oxide surfaces shift to the side of higher oxygen po-
tential. In summary, the external oxygen potential gradient causes 

• a directed flux of cation vacancies, jV = –jA2+ – jB2+, from the high to the low oxygen potential
side of the oxide; 

• a drift motion of both crystal surfaces towards the high-pO2
side; and

• demixing of the cations with enrichment of the faster cation at the high-pO2
side.
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*Oxygen ion-conducting oxides will be considered later on. 
**In most cases, the results obtained for binary oxides can easily be transferred to higher oxides. 
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The demixing will start at the crystal surfaces, and after some time a steady state will be reached
where both crystal surfaces move with the same, constant velocity and the demixing profile has become
stationary (relative to the moving surfaces).

The phenomenon of kinetic demixing was first analyzed by Schmalzried et al. [7] and experi-
mentally demonstrated using as a model system the oxide solid solution (Co1–xMgx)O, where Co is the
faster component. As expected, strong enrichment of Co was found at the high-pO2

side of the material.

Formal treatment of demixing in an oxygen and electric potential gradient

In this section, the basic equations, which are necessary for the formal treatment of the demixing prob-
lem, will be given. In addition to the oxygen potential gradient, which was discussed qualitatively in the
previous section, an additional electric potential gradient will be applied to the oxide. Since the basic
equations for both forces are similar, both phenomena can be treated simultaneously. At first, the
steady-state demixing problem will be solved, and then the transient demixing problem will be ana-
lyzed. 

As known from linear, irreversible thermodynamics [8], the driving forces for the motion of
charged species (index i) are the gradients of their electrochemical potentials, ηi = µi + zi � F � Φ, where
µi is the chemical potential, zi the charge number, F Faraday’s constant, and Φ the electric potential.
The corresponding equations for cations, AzA+ and BzB+, and electron holes, h•, are*

(3)

(4)

(5)
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*Here, we have permitted different charges, zA and zB for both cations.  

Fig. 1 Schematic experimental setup of an oxide that is exposed to an oxygen potential gradient (established, e.g.,
by different gas mixtures on both sides). (a) Chemical potential gradients of the chemical components A, B, and
O. (b) Fluxes of cations, A2+ and B2+, cation vacancies, V, and electron holes, h•, and demixing profile of the faster
component A and shift of the crystal surfaces.
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The quantities Lij are the Onsager transport coefficients [8]. 

Steady-state demixing 
In the steady state, both cations are moving with the same velocity, vstat, relative to the immobile oxy-
gen sublattice of the oxide. Since the fluxes can always be written as a product of a velocity and a con-
centration, ji = v � ci, the steady-state condition is given by:

(6) 

Inserting eqs. 3 and 4 into eq. 6, we obtain the “demixing equation”, which relates the two forces
on the chemical components A (↔AzA+ – zAh•) and B (↔BzB+ – zBh•), ∇µA and ∇µB, and the force
on the electron holes, ∇η(h•):

(7)

The functions Ψ and Γ are given by

(8)

where zA
eff and zB

eff are the so-called effective charges of A and B:

(9)

The effective charges contain the diagonal coefficients and the cross-coefficients of the Onsager
transport matrix. The former describe the direct influence of the forces, while the latter express the flux
coupling between different mobile components. For example, LAB describes the flux of AzA+ due to the
force ∇η(BzB+) (see eq. 3), and, because of the Onsager relation, LAB = LBA, also the opposite effect,
i.e., the flux of BzB+ owing to the force ∇η(AzA+) (see eq. 4). This means that the difference between
the effective charges, zi

eff, and the formal charges, zi, has a purely kinetic origin. 

Steady-state demixing in an oxygen potential gradient
If only an external oxygen potential gradient, but no external electric potential gradient, is applied there
will be no net electric current, i, through the oxide (ambipolar diffusion). Then, the gradient of the elec-
trochemical potential of the electron holes in eq. 7, ∇η(h•), can be computed from the condition i = 0.
Since the oxide under consideration is a good semiconductor, the transport coefficient of electron holes
is much larger than all other transport coefficients, Lhh >> Lij, and the corresponding force is approxi-
mately zero, ∇η(h•) ≈ 0. Thus, the demixing equation (7) simplifies to ∇µB = Ψ∇µΑ, and only the pa-
rameter Ψ determines the demixing behavior. To proceed, we have to distinguish between nearly ideal,
homovalent solid solutions of AO and BO and heterovalently doped oxides with strong deviations from
ideality. In the former case, the Onsager cross-coefficients can be neglected in the expression for Ψ (see
eq. 8), whereas in the latter case, the cross-coefficients have to be considered.

Homovalent, ideal solid solution of AO and BO
If the cross-coefficients are negligible, the diagonal coefficients are given by Lii = Dici/RT (Di and ci
are the diffusion coefficient and concentration of species i), and Ψ simplifies to Ψ = DA/DB. Then, the
demixing equation takes the simple form

(10)

Using the equilibria A + 1/2O2(g) ↔ AO and B + 1/2O2(g) ↔ BO, and assuming an ideal solid so-
lution of AO and BO, we obtain ∇µΑ + 1/2∇µO2

= ∇µAO = RT∇lnxA (xA is the molar fraction of A)
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and an analogous expression for B, ∇µΒ + 1/2∇µO2
= ∇µBO = RT∇lnxB. With these relations, eq. 10

can be written as:

(11)

Equation 11 shows that the ratio DA/DB determines whether there is kinetic demixing and at
which side of the oxide component A becomes enriched. If both components have the same diffusion
coefficient, DA/DB = 1, there will be no demixing, ∇xA = 0. If DA/DB > 1 (A is the faster component),
∇xA has the same sign as the oxygen potential gradient, ∇µO2

, i.e., A becomes enriched at the high-pO2
side. If, on the other hand, B is the faster component, DA/DB < 1, A becomes enriched at the low-pO2
side. As shown by Schmalzried et al. [7], the demixing profile is then obtained by integration of eq. 11
with appropriate boundary conditions. The resulting theoretical demixing profiles are in good agree-
ment with the experimentally found demixing profiles.

Heterovalently doped oxide
If the oxide AO is heterovalently doped (e.g., with an oxide B2O3), the excess charge of the dopant ion
B3+ (compared to the host ion A2+) results in the formation of charge-compensating cation vacancies,
V. Then the oxide solid solution, (A1–xBx)O, can no longer be treated as an ideal solution. As shown in
detail in ref. [9], in a dilute oxide, A1–xBxO (x << 1), the flux of the dopant, B, can be written as:

(12)

The dimensionless quantity ρ contains all physical correlation effects and is of the order of 1.
Equation 12 shows that the dopant flux consists of two terms, a pure diffusion term, –DB∇cB, charac-
terized by the dopant diffusion coefficient, DB (=LBBRT/cB), and a drift term, that is proportional to the
directed vacancy flux, jV. The direction of the drift term, which determines on which side of the sam-
ple the dopant becomes enriched, depends crucially on the sign and magnitude of the nondiagonal ele-
ment LBA. In heterovalently doped oxides, e.g., AO(+B2O3), solute-vacancy interactions might result in
a nonvanishing and negative cross term LAB. These interactions are caused by the coulombic interac-
tion between the excess charges of the defects.*

The interaction of the dopant ion with its neighbors may be weak (as is expected for homovalent
dopant ions) or stronger (for heterovalent dopant ions). If the interaction is weak, dopant ions and va-
cancies do not form bound pairs but drift in opposite directions. For strong attractive interaction, on the
other hand, dopant ions and vacancies form bound pairs, and the dopant ions drift in the same direction
as the vacancies. 

This qualitative picture is confirmed by a microscopic diffusion model that considers nearest-
neighbor interactions. The so-called five-frequency model [10] uses five exchange frequencies of va-
cancies and ions (see Fig. 2): ω0 and ω1 for exchange of vacancies with solvent ions in the pure crys-
tal (i.e., far away from the solute ion) and in the nearest neighborhood of the solute ion; ω3 for vacancy
jumps, which dissociate a solute-vacancy pair; ω4, which creates a new pair; and ω2 for exchange of a
vacancy and a solute ion. ω3 and ω4 are coupled by the condition of detailed balance, ω4/ω3 =
exp(–∆gpair/RT), where ∆gpair is the binding Gibbs energy of the solute-vacancy pair. 
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*Cation vacancies possess a negative excess charge relative to the ideal lattice, while, e.g., trivalent dopant ions possess a posi-
tive excess charge. This is more evident using the Kröger–Vink notation for the vacancy, VA″, and the dopant ion, BA

• (prime and
dot indicate negative and positive excess charges, respectively).
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Within this model, the transport coefficients Lij (i,j = A,B) are known exactly [10]

(13)

(14)

The index “free” denotes ionic motion by means of free (i.e., unbound vacancies with molar frac-
tion xV

free), while the index “pair” denotes ionic motion by means of vacancies that are bound in solute-
vacancy pairs (molar fraction xp). The functions λij(ωk) are known functions of the five exchange fre-
quencies ωk (k = 0,1,2,3,4) [10]. Whereas λAA and λBB are always positive, λAB becomes negative for
strong, attractive solute-vacancy interaction. As a consequence of eq. 14, the ratio LAB/LBB in eq. 12 is
a constant, LAB/LBB = λAB/λBB, which depends only on the exchange frequencies, ωk, and not on the
fractions of free or bound vacancies. Thus, the direction of the solute drift flux is only determined by
the solute-vacancy binding energy [9].  

Demixing experiments with Ga2O3-doped CoO [11] clearly show demixing of Co and Ga with
enrichment of Ga at the low oxygen potential side (see Fig. 3). Since the tracer diffusion coefficients of
Co and Ga are also known [12], the ratio LGaCo/LGaGa can be obtained from the demixing profile using
eq. 14. The result is LCoGa/LGaGa = –1.7, leading to the following interpretation. Owing to strong bind-
ing between the dopant Ga and the vacancies, solute-vacancy pairs, {Ga3+,V}(≡{GaCo

• , VCo″ }′) are
formed, and the drift flux of the dopant is directed to the side of lower oxygen potential (i.e., in the same
direction as the vacancy flux), where the dopant Ga therefore becomes enriched (see Fig. 3).
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Fig. 2 Five-frequency model of solute diffusion (� = solvent cation, � = solute cation, � = cation vacancy). ωk
(k = 0,1,2,3,4) = exchange frequencies of vacancies and cations (see text).
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V
free
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pair= +⋅ ⋅λ ω λ ω( ) ( )0
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Fig. 3 Demixing profile of Ga in (Co1–xGax)O exposed to an oxygen potential gradient (T = 1250 °C, pO2

(1) = 10–6

bar (left), pO2

(2) = 10–5 bar (right), ∆z = 725 µm, xGa
0 = 1.85 %, t = 38.5 h) [11].



Steady-state demixing in an oxygen ion conductor
Demixing in an oxygen potential gradient might be important also in oxygen ion conductors, such as
yttria-doped zirconia (YSZ) or SrO- and MgO-doped lanthanum gallate (LSGM). When these oxides
are used as electrolytes, e.g., in solid oxide fuel cells (SOFCs), oxygen ions are driven through the elec-
trolyte and simultaneously electrons are flowing through the external circuit. As soon as the cations,
e.g., Zr4+ and Y3+ in YSZ, have different diffusion coefficients, there will be demixing of the elec-
trolyte. The detailed formal analysis can be found in refs. [13,14]. Since cation diffusion is very slow
in these oxides [15,16], steady-state demixing will be reached only after rather long times. If, for ex-
ample, the slowest diffusion coefficient is taken as D = 10–14 cm2 s–1, one obtains 15 000 years for an
electrolyte thickness of 1 mm. However, for a thickness of 10 µm (which is the target for future SOFCs),
the time to reach the steady state is only 1.5 years, which is comparable to the desired operating times
of SOFCs. 

Steady-state demixing in a pure electrical potential gradient
Bray and Merten [17] were the first to raise the possibility of demixing occurring in a solid electrolyte
due to an electrical field. Monceau et al. [18] performed a quantitative formulation of the kinetic demix-
ing problem in an electrical potential gradient and presented the results of demixing experiments for a
(Co,Mg)O solid solution. Systematic theoretical and experimental studies of demixing of homovalent
oxide solid solutions and heterovalently doped oxides in an electric potential gradient were performed
by Teller and Martin [19–21].

Homovalent, ideal solid solution of AO and BO
The electrical potential gradient causes fluxes of the cations, A2+ and B2+, and the electron holes, h•,
which are given by eqs. 3–5. To apply the electric potential gradient, inert electrodes (e.g., Pt-elec-
trodes) are used which are the source or sink of electrons. For example, at the cathode the following re-
actions take place:

(15)

This means that the oxide grows at the cathode. At the anode the opposite reactions take place,
i.e., here the oxide dissociates into cations, electrons and oxygen molecules. Thus, both oxide surfaces
move to the cathode side. In the steady state both surfaces and also both cations move with the same
velocity (see eq. 6), as in the case of a pure oxygen potential gradient. However, now the term ∇η(h•)
cannot be neglected in eq. 7. Rearrangement of eq. 7 yields:

(16)

After integration of eq. 16 over the overall sample thickness one obtains with ∇ηh• = U � F (U is
the applied voltage):

(17)

where xA
(1) and xA

(2) are the unknown molar fractions of A at the oxide surfaces. γ = DA/(DA–DB) is a
constant, since both diffusion coefficients are proportional to the cation vacancy fraction, xV. The con-
centration profile of A (and B, xA + xB = 1) can be obtained by integration of eq. 16 and the overall
mass balance for A. Details can be found in [19]. Figure 4 shows steady-state demixing profiles calcu-
lated in this way for different values of the applied voltage U. With increasing voltage, the anode-side
of the oxide is more and more depleted by the faster component A. 

A typical result of a steady-state demixing experiment for (Co1–xNix)O is shown in Fig. 5.
Enrichment of Co near the cathode side of the oxide is found [14,21], as expected qualitatively due to
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the higher diffusivity of Co compared to Ni [22]. However, a quantitative modeling of the demixing pro-
file (solid line in Fig. 5) is only possible if the effective charges (see eq. 9) of Co and Ni are chosen as
zCo

eff ≈ 1 and zNi
eff ≈ 1. The strong deviation from the formal charges, zCo = 2 and zNi = 2, is due to the

fact that the cross-terms LCoh and LNih are by no means negligible and negative, LCoh/LCoCo ≈ –1 and
LNih/LNiNi ≈ –1. A similar result was found during tracer drift experiments in pure CoO exposed to an
electric field and explained by association between cation vacancies and electron holes [23]. Finally, it
should be emphasized that the electric current during demixing is mainly conducted by electron holes,
because th ≅ 1 and tcation << 1. Nevertheless, there is a demixing process for the cations as long as they
have different mobilities.

Heterovalently doped oxide
Demixing in a heterovalently doped oxide, e.g., AO(+B2O3), is more complicated. Owing to coulom-
bic interactions between the defects (solute-vacancy pairs), the cross term LAB can no longer be neg-
lected and might determine the complete demixing behavior (as in the case of an applied oxygen po-
tential gradient). An example is again Ga-doped CoO, (Co1–xGax)O, in which Ga-ions, GaCo

• , and
cation vacancies, VCo″ , (Kröger–Vink notation) form solute-vacancy pairs, {GaCo

• , VCo″ }′. These pairs
have a negative excess charge and are driven by the electric potential gradient towards the anode. Thus,
Ga is enriched at the anode side, independent of the ratio of the diffusion coefficients of Co and Ga [20].
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Fig. 4 Dependence of the steady-state demixing profile of component A in (A,B)O on the applied voltage 
U (T = 1300 °C, xA

0 = 0.5, γ = DA/(DA–DB) = 2, z = 0: anode, z = ∆z: cathode).

Fig. 5 Steady-state demixing profile of Co in (Co1–xNix)O (T = 1444 °C, U = 50 mV, xA
0 = 0.932, ∆z = 600 µm,

t = 17 h).



Transient demixing
To obtain the transient demixing behavior prior to the steady state, the transport equations (eqs. 3–5)
with the appropriate boundary conditions were solved numerically (nonlinear diffusion problem with
moving boundaries and time-dependent boundary conditions). Demixing of homovalent, ideal oxide
solid solutions in an oxygen potential gradient [24] and in an electric potential gradient [25] was ana-
lyzed. Here, only the former case will be discussed.  

The results on the time evolution of the demixing profiles, xA(z,t) in (A,B)O exposed to an oxy-
gen potential gradient are shown in Fig. 6a [the numerical calculations were performed with a parame-
ter set for the oxide solid solution (Co,Mg)O]. It can be seen that after about 20 days the steady state is
reached. The analytically computed, stationary demixing profile (represented by open circles in Fig. 6a)
agrees well with the numerical solution. The results on the temporal variations of the vacancy fraction,
xV(z,t), during demixing are illustrated in Fig. 6b. It should be noted that xA and xV at the boundaries
continuously change with time until the steady state is reached. 

Figure 7a shows the time dependence of the boundary velocities, vI and vII (low- and high-oxy-
gen potential side, respectively). Both velocities decrease with time and eventually approach a constant
value that corresponds to the steady-state velocity, vst. Considering the time dependencies of xV(z,t) and
the surface velocities, vI and vII, two transient processes are involved in the demixing process. 

The first transient process corresponds to the establishment of a quasi-stationary distribution of
xV(z,t) (see Fig. 7b), and both surface velocities show a fast rate of change (see insert in Fig. 7a).
However, the degree of demixing is negligible during this time period (see Fig. 7b). The typical relax-
ation time, τ1, for this process is determined by chemical diffusion of the vacancies in the oxide solid
solution having an approximately homogeneous composition. The estimated time, τ1 = 20 min, agrees
well with the numerically obtained relaxation time [24]. 

The second transient process with a relaxation time τ2 can be characterized by the evolution of
the demixing profile, xA(z,t), across the oxide. Because these compositional changes demand cationic
motion, τ2 can be estimated from the mean-square displacement of the cations, τ2 = (∆z)2/(2D

–
cation),

where ∆z is the crystal thickness and D
–
cation the average cation self-diffusion coefficient. The estimated

value for τ2 is ca. 490 h. It compares well with the numerically obtained value of about 480 h. It should
be noted that xV(z,t) also shows temporal variations during the second relaxation process, however, at a
slow rate, which confirms the previous assumption of a quasi-steady state.
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Fig. 6 (a) Temporal variations of the spatial distribution of xA in (A,B)O. The steady-state demixing profile
computed analytically is represented by open circles. (b) Temporal variations of the spatial distribution of the
vacancy fraction, xV [24].



Kinetic decomposition
If during demixing due to an external thermodynamic force, the stability field of the material is left, de-
composition of the material and the formation of new phases might take place (kinetic decomposition).
First, Schmalzried and Laqua [26] observed the formation of a multiphase layer in the system
NiO–TiO2 after exposure of a single-phase NiTiO3-crystal to an oxygen potential gradient. While
(Ni,Ti)O is formed at the high-oxygen potential side, TiO2 was found at the low-oxygen potential side
of the crystal. The origin of this process is again the difference of the diffusion coefficients of Ni and
Ti in NiTiO3, but now demixing is driven to the point where the stability field of the oxide is left.
Kinetic decomposition was also found for fayalite, Fe2SiO4, exposed to an oxygen potential gradient
[27] (formation of SiO2 and Fe3O4 at the low-, respectively, high-oxygen potential side) and for the sys-
tem NiO–SiO2 in an oxygen potential gradient [28,29].   

MORPHOLOGICAL INSTABILITIES

During a diffusion-controlled solid-state reaction, matter is transported toward (or away from) an inter-
face that separates the reactants and the product. The progress of the reaction is strongly determined by
the morphology of the interface, because the morphology determines the boundary conditions for the
transport problem. One-dimensional diffusion with a planar interface is only a special case, since often
morphological instabilities result in nonplanar interfaces with complicated structures, which can
roughly be classified as cellular, dendritic, or fractal. The morphological stability of interfaces belongs
to the wide class of self-organization or pattern-formation problems arising in biology, physics, chem-
istry, and geology, in which a nonequilibrium system forms new structures. Examples are complex bi-
ological systems, dendrites during the growth of snowflakes, the Bénard-instability or spatio-temporal
structures during the formation of the so-called Liesegang rings [30,31]. In all these different systems,
new structures develop through instabilities from stationary structures as a result of changed external
parameters (control parameters).

In the next two sections, we will review two types of solid-state reactions where we have found
complicated morphological instabilities, which may serve as model reactions. Our first example is a

M. MARTIN

© 2003 IUPAC, Pure and Applied Chemistry 75, 889–903

898

Fig. 7 (a) Temporal variations of the boundary velocities vI and vII during the demixing process. The changes
during the first 3 h are shown in the inset. (b) Temporal variations of the spatial distribution of xV (upper part) and
xA (lower part) during the first hour [24].



solid/solid interface between two ionic conductors, which is driven by an applied electric field, and our
second example concerns interdiffusion of ionic conductors in an electric field.

Morphology of an interface between two ionic conductors

To study the morphology of an interface between two crystalline solids, we consider a diffusion couple
consisting of two ionic conductors and apply an external electric field as the driving force for the mo-
tion of the solid/solid interface. To focus on the essential part of the problem, we study a phase bound-
ary between two immiscible ionic conductors. In the experiments, we use the quasi-binary system
AgCl–KCl as a model system. Below the eutectic temperature, Te = 306 °C, there is no mutual solu-
bility, although AgCl as well as KCl crystallize in the rock-salt structure. However, the lattice constants
of both compounds are very different, resulting in a mismatch of about 12 %. Both compounds are prac-
tically pure cation conductors. In AgCl (cation Frenkel disorder), silver-ions are mobile in the intersti-
tial sublattice, while in KCl (Schottky disorder), potassium-ions are mobile by means of cation vacan-
cies. As a result of the different disorder types, the ionic conductivity in AgCl is about 6 orders of
magnitude larger than in KCl. Experiments were done with AgCl- and KCl-single crystals, which were
used in an electrochemical cell +/Ag/AgCl/KCl/Ag/– [32]. Silver-ions, Ag+, are driven by the applied
electric potential difference from the Ag-anode to the boundary AgCl/KCl. Since Ag is not soluble in
KCl, the following exchange reaction takes place:

Ag+ + KCl → AgCl + K+ (18)

This exchange reaction has two consequences: (i) it allows further charge transport by means of
K+-ions, and (ii) the AgCl-phase grows at the expense of the KCl-phase. Since transport in AgCl is
much faster than in KCl, the applied electric potential falls off across the “slower” KCl crystal. Again,
this has two consequences: (i) the interface is an isopotential line, and (ii) the rate-determining step for
the motion of the interface between the two solids is the flux of K+-ions in KCl (or the oppositely di-
rected flux of the cation vacancies). Therefore, any spatial perturbation of the plane interface will grow
faster than the plane interface itself (the electric field at the tip of the perturbation is larger than at the
plane interface). From this simple argument, and by analogy with previous experiments at gas/oxide in-
terfaces [33–35], we expect the planar solid/solid phase boundary between AgCl and KCl to be mor-
phologically unstable, if we apply the potential difference in such a way that AgCl grows. If we reverse
the applied voltage, we expect the boundary to be stable. This picture is confirmed by the results of a
linear stability analysis [32] for the moving solid/solid interface. A typical experimental result, demon-
strating that the solid/solid interface is morphologically unstable is shown in Fig. 8. We note that AgCl

© 2003 IUPAC, Pure and Applied Chemistry 75, 889–903

Materials in thermodynamic potential gradients 899

Fig. 8 Cross-section of the unstable solid/solid interface between AgCl (dark) and KCl (bright) in an electric
potential gradient. (T = 563 K, t = 42 h, electric field = 10 V/mm, bottom: anode, top: cathode). The micrograph
was taken in an optical microscope [32].



grows into KCl in the form of “trees”, which are typical of fractal growth phenomena [36]. Closer in-
spection shows that these trees are 2D objects, with certain orientations in the KCl-matrix, which are
probably the result of elastic effects due to the different lattice constants of both materials. If the polar-
ization of the cell is reversed, i.e., –Ag/AgCl/KCl/Ag/+, the plane interface between AgCl and KCl is
morphologically stable as expected. A more detailed discussion can be found in ref. [32]. 

Similar morphologies as observed in the experiments can be produced in Monte Carlo simulations
[37,38]. In these simulations, we start from an atomistically flat interface between two ionic conductors
AX (black) and BX (white) (see Fig. 9). A vacancy is introduced at the top of the simulation lattice and
exchanges sites with ions A and B. These ions interact by means of short range interactions εAA, εBB
and εAB, and, therefore, the vacancy (i) performs a correlated random walk, and (ii) causes a motion of
the interface between the two ionic conductors. An external electric field causes an additional drift mo-
tion of the vacancy. When the vacancy reaches the bottom of the simulation lattice, it is killed. With this
simple model, a variety of interface morphologies can be produced [38]. 

If the simulation is performed in the same way as the previously described experiment, i.e., the
faster phase (black) grows at the expense of the slower phase (white), the interface is morphologically
unstable. The simulated morphology in Fig. 9 is qualitatively in agreement with the experimentally ob-
served one in Fig. 8. If the direction of the vacancy flux during the Monte Carlo simulation is reversed
(corresponding to a change of the polarization in the experiment), the plane surface is morphologically
stable, as observed experimentally. 

Instability of diffusion fronts in electric fields

In the previous section, we have demonstrated that the moving interface between two immiscible ionic
conductors, which is driven by an external electric field, is morphologically unstable when the “faster”
of both phases grows. In this chapter, we will analyze what happens if we go to the other extreme (i.e.,
if the two ionic conductors are totally miscible). A good example is provided by the system AgCl–NaCl.
Between the critical temperature Tc = 198 °C (below which there is a miscibility gap with mutual sol-
ubilities) and the melting temperature of AgCl, both compounds form a complete solid solution. As be-
fore, Ag+-ions in AgCl are mobile in the interstitial sublattice, Na+-ions in NaCl are mobile by means
of cation vacancies, and the ionic conductivity, σ, in AgCl is orders of magnitude larger than in NaCl.
In the solid solution, (Ag1–xNax)Cl, σ decreases exponentially with the composition x [39].
Experiments were performed in the same way as before with an electrochemical cell
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Fig. 9 Monte Carlo simulation of the interface between two ion conductors in an electric field (black: good ionic
conductor, white: bad ionic conductor, bottom: anode, top: cathode) [38].



+/Ag/AgCl/NaCl/Ag/– [40]. However, in contrast to the previous experiment, we have now a combina-
tion of two effects, interdiffusion of Ag+ and Na+, and drift in the externally applied electric potential
gradient. Since the diffusion coefficients of Ag+ and Na+ depend exponentially on composition, x, pure
interdiffusion would result in very steep interdiffusion profiles. If we apply in addition an electric field
in such a way that the faster “phase” (in this case, the Ag-rich part of the solid solution) grows, we ex-
pect morphological instabilities, in analogy to the previously discussed case and according to the prin-
ciple formulated there. It has to be emphasized, however, that these expected morphological instabili-
ties are instabilities of diffusion fronts in a single-phase system without any phase boundary.

Figure 10 shows a typical result of an interdiffusion and drift experiment. The picture was ob-
tained in an electron microscope using back-scattered electrons, which indicate a phase contrast. In the
picture, the steep concentration gradient in the interdiffusion zone appears as sharp phase contrast, but
microprobe analysis confirms a steep concentration gradient in a single-phase system. 

While the interdiffusion profile without an external electric field is one-dimensional (i.e. planar
as expected), it is by no means one-dimensional with an applied electric field. Instead, one can observe
instabilities of the diffusion fronts in the form of “fingers”. 

CONCLUSIONS

We have discussed three types of degradation mechanisms for materials in thermodynamic potential
gradients, kinetic demixing, kinetic decomposition, and morphological instabilities, all of which are of
great significance for the application of materials. For the cation demixing in a solid solution of ho-
movalent oxides, (A1–xBx)O, we have reviewed the formal analysis of the transport problem. As ex-
pected, the faster cation is enriched at the cathode. Experiments were performed with the model system
(Co1–xNix)O, confirming the theoretical results. In contrast, the demixing behaviour in heterovalently
doped oxides, such as (Co1–xGax)O, is determined by the formation of dopant-vacancy pairs. As a re-
sult of this interaction, the cross term LCoGa can no longer be neglected and dominates the demixing be-
haviour, independent of the ratio of the diffusion coefficients of both cations.

For diffusion-controlled solid-state reactions in an external electric field, we have found morpho-
logical instabilities of an originally planar solid/solid interface and of diffusion fronts. Experiments
have been performed with diffusion couples of two ionic conductors. The interface AgCl/KCl exhibits
fractal-like morphological instabilities, while the diffusion fronts in the totally miscible system
AgCl–NaCl exhibit finger-like instabilities. With these experimental results, we may formulate the fol-
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Fig. 10 Cross-section of the interdiffusion zone between AgCl (bright) and NaCl (dark) in an electric field (T = 523
K, t = 14 h, electric field = 720 V/mm, bottom: anode, top: cathode). The micrograph was taken in a scanning
electron microscope [40].



lowing simple principle for the stability of a moving interface during a solid-state reaction. A moving
interface between two phases is morphologically unstable if the “faster” phase (i.e., the phase with the
higher mobility) grows, while it is morphologically stable if the “slower” phase grows. The two solid-
state reactions discussed above confirm this simple principle. 
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