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Abstract: The development of asymmetric synthesis during the past two decades aided or-
ganic chemists considerably in the synthesis of complex natural products. Organoborane
chemistry continues to play an important role in asymmetric synthesis. One of the important
reactions that has become very common in the arsenal of synthetic chemists is allylboration
and related reactions. Another important reaction that has recently attained enormous impor-
tance in organic chemistry is the ring-closing metathesis (RCM) reaction. Indeed, a combi-
nation of allylboration and RCM reactions provides an excellent route to cyclic ethers, lac-
tones, lactams, etc. Herein, we describe a sequential asymmetric allylboration and RCM
reaction protocol that has been utilized for the synthesis of several α-pyrone-containing nat-
ural products, particularly biologically active molecules. 

INTRODUCTION 

Almost four decades ago, Mikhailov and Bubnov introduced the reaction of triallylborane with carbonyl
groups producing homoallylic alcohols [1]. This stereospecific reaction occurs with allylic rearrange-
ment, following an SE2′ pathway, and is capable of providing a wide range of homoallylic alcohols,
amines, etc. with excellent stereoselectivity (eq. 1) [2]. Hoffmann and coworkers pioneered an asym-
metric version of this reaction. Brown and others have subsequently developed several asymmetric
allylborating agents during the last two decades, making it one of the commonly utilized reagents for
the syntheses of complex molecules. 

(1)

We have utilized a tandem allylboration-ring-closing metathesis (RCM) reaction sequence for the
synthesis of several molecules, particularly those containing lactenones, lactones, and their derivatives
(Scheme 1). 
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2002. Other presentations are published in this issue, pp. 1157–1355.
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Some of the recent developments in our laboratories are summarized below.

Allylboration and related reactions

Since the discovery of allylboration by Mikhailov and Bubnov, several substituted allylborating agents
have been prepared during the ensuing decades to achieve the synthesis of several types of homoallylic
alcohols (eq. 2) [3,4]. 

(2)

Of the several modified allylborations, crotylboration (eq. 3) is one of the most utilized reactions.

(3)
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Scheme 1 Applications of lactenones and lactones in organic synthesis.



However, a major problem with crotylboration is the scrambling of the reagent (eq. 4), resulting
in poor diastereoselectivity of the products. It is crucial to control the allylic rearragements of crotyl-
boranes to achieve maximum diastereoselectivity. Crotyldialkylboranes tend to rearrange more rapidly
than crotylboronates. Conducting the reactions at low temperatures is essential to arrest the rearrange-
ment and achieve high diastereoselectivity [5,6].

(4)

Alkoxyallylboration (eq. 5), allenylboration (eq. 6), and propargylboration (eq. 7) are variations
of allylboration and undergo reaction via allylic rearrangement [3].

(5)

(6)

(7)

The product homoallylic alcohols and amines derived from all of these “allyl”boration reactions
contain an alkene moiety, which could be further transformed into other functional groups. This aspect
has been exploited well for the synthesis of several complex molecules, some of which are described
below.

Asymmetric allylboration

Asymmetric “allyl”boration is an excellent route to prepare chiral homoallylic alcohols and amines in
high diastereo- and enantioselectivity. Such molecules are important for the stereoselective synthesis of
highly sophisticated conformationally nonrigid systems [7]. Accordingly, numerous searches for the
most efficient reagent that can achieve both these selectivities in a single step have been made [7].

Hoffmann and coworkers reported the first asymmetric allylboration utilizing a chiral auxiliary
derived from camphor (Scheme 2) [8]. Various allyl- and crotylboration reactions were also examined
using this auxiliary for both single and double asymmetric synthesis [4a–d].
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α-Pinene-derived “allyl”borane reagents
α-Pinene has been proven to be an excellent chiral auxiliary for various types of asymmetric transfor-
mations [3e,f]. Accordingly, α-pinene was utilized for the preparation and reaction of several remark-
ably successful diisopinocampheyl“allyl”boranes (Fig. 1) [3a]. The preparation and applications of rep-
resentative examples of reagents are discussed below.

B−Allyldiisopinocampheylborane
We introduced B-allyldiisopinocampheylborane for allylboration and achieved an economical prepara-
tion of optically active homoallylic alcohols with predictable stereochemistry and high ee [9]. The
reagent prepared from either B-chlorodiisopinocampheylborane (DIP-Chloride™) [10] or B-methoxy-
diisopinocampheylborane and allylmagnesium bromide provides high ee for most of the aldehydes
tested, including heterocyclic [11] and fluorinated aldehydes [12] (Scheme 3). With chiral aldehydes,
the reagent controls the diastereoselectivity and high de and ee are achieved [13]. High selectivities
were also achieved for the allylboration of a series of dialdehydes [14]. 
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Scheme 2 Original asymmetric allylboration.

Fig. 1 α-Pinene based “allyl”borane reagents.



Recently, we have shown that this reagent provides high ee for homoallylic amines produced by
the allylboration of imines generated from N-silyl imines (eq. 8) [15].

(8)

B-Methallyldiisopinocampheylborane
This reagent, readily prepared from Ipc2BOMe and methallyllithium, upon treatment with aldehydes
produces methallyl alcohols in very high ee [16] (eq. 9). 

(9)

3,3-Dimethylallyldiisopinocampheylborane
The original synthesis of this reagent involves the hydroboration of 1,1-dimethylallene. Allylboration
typically provides products in 89–96 % ee with predictable configuration (eq. 10) [17].

(10)

Subsequently, we have developed a more economical synthesis of this reagent from the corre-
sponding dimethylallylmagnesium chloride and DIP-chloride (eq. 11) [18]. This reagent has been ap-
plied for the preparation of an intermediate during the synthesis of epothilone C [18].
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Scheme 3 Preparation and reactions of B-allyldiisopinocampheylborane.



(11)

[Z]-3-Alkoxyallyldiisopinocampheylborane
Stereoselective preparation of the diastereomers of vicinal diols is important in organic chemistry. This
task can be accomplished via alkoxyallylboration reaction. Metal salts of allyl alkyl ethers remain in the
Z-form due to chelation [19]. Transmetalation with boron retains the Z-stereochemistry [20]. Synthesis
of [Z]-γ-alkoxyallyldiisopinocampheylborane was achieved by the reaction of the lithium salt of allyl
alkyl ether with B-methoxydiisopinocampheylborane, followed by treatment with BF3�Et2O [21]. The
reaction of this reagent with aldehyde at low temperatures exhibits high syn-selectivities. This reaction
allows for the preparation of syn-1,2-diols in high ee by the removal of the alkyl protecting groups
(Scheme 4). We have applied this reagent for the preparation of several styryllactones possessing me-
dicinal properties (vide infra) [22].

[E]-3-(2,6-dioxaborolyl)allyldiisopinocampheylborane
We achieved the synthesis of vicinal anti-diols in excellent enantio- and diastereomeric purities via the
γ-borolylallylborane reagent prepared via the hydroboration of allenylboranes, which was in turn pre-
pared by the treatment of allenylmagnesium bromide with the corresponding chloroborane (Scheme 5)
[23].
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Scheme 4 Preparation of vic. syn-diols.

Scheme 5 Preparation of vic. anti-diols.



B-[E]- and [Z]-Crotyldiisopinocampheylborane
Hoffmann synthesized E- and Z-crotylboronates and reported that the stereochemistry is transferred
during the crotylboration of aldehydes [4]. The preparation of isomerically pure E- and Z-crotyl-
boronates involving the use of isomerically pure crotylpotassium, was reported by Schlosser [24]. We
utilized a similar procedure for the synthesis of isomerically pure B-[E]- and [Z]-crotyldiisopinocam-
pheylboranes (eqs. 12, 13) [6].

(12)

(13)

The original preparation involved the liberation of pure crotylborane reagent from the “ate” com-
plex using BF3–Et2O [6]. However, we have recently found that the addition of BF3–Et2O is unneces-
sary. Accordingly, our new reaction protocol involves the addition of the aldehydes to the “ate” com-
plex as shown in eq. 14 [25]. 

(14)

The reaction of these complexes with aldehydes achieved the synthesis of the four possible iso-
mers of β-methylhomoallylic alcohols with remarkable optical and geometric efficiencies. It is impor-
tant to maintain the reaction temperatures below –45 °C to avoid the scrambling of the crotylboranes.
The reagent controls the diastereoselectivity in reactions with chiral aldehydes. Thus, it is possible to
prepare all of the eight diastereomers at will by the appropriate choice of the reagent and the chiral alde-
hyde [25,26].

Applications of allyl- and crotylboration

Asymmetric “allyl”boration is one of the very useful reactions for the synthesis of complex natural
products and biologically active molecules. Both tartrate- and pinane-derived reagents have been widely
exploited for syntheses. The applications of pinane-based “allyl”boranes have been reviewed before
[3a,e,f]. 

Allylboration and ring-closing metathesis reaction: A powerful combination 
Recent developments in RCM have revolutionized the synthesis of carbocyclic compounds. Several
novel ruthenium catalysts have been developed by Grubbs and coworkers (Fig. 2) [27].
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Fig. 2 Grubbs’s RCM catalysts.



The appropriate utilization of one of the ruthenium catalysts handles even difficult cyclizations.
The reaction occurs via a mechanism shown in Fig. 3.

We have recently applied a tandem allylboration-RCM reaction sequence for the synthesis of
cyclic ethers and esters. For example, sequential asymmetric allylboration and RCM reaction provides
a simple route for the synthesis of several lactone-containing molecules. Representative examples of our
syntheses are shown below. Our protocol for α-pyrone synthesis involves the esterification of homo-
allylic alcohols derived from allylboration with acryloyl chloride, followed by RCM using Grubbs’
ruthenium catalyst (eq. 15) [27]. 

(15)

Utilizing this strategy, we have synthesized several α-pyrone containing natural products, such as
masoia lactone [27], goniothalamin [27], and argentilactone (Fig. 4) [28].

We have described the first enantioselective synthesis of Umuravumbolide (Scheme 6), via
Alpine-Borane® reduction of an acetylenic ketone and allylboration with B-allyldiisocaranylborane as
key steps to induce asymmetry [29].
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Fig. 3 Catalytic cycle for RCM reactions.

Fig. 4 α-Pyrone-containing natural products.



A reagent-controlled synthesis of tarchonanthuslactone, described below, was also achieved using
this strategy (Scheme 7) [30].

Starting with optically pure α-pyrones synthesized by the tandem allylboration-RCM strategy, we
have prepared several analogs of hypercholesterolemic agents via diastereoselective trans-epoxidation
and regioselective 1,3-reduction (Scheme 8) [31].
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Scheme 6 Asymmetric synthesis of umuravumbolide.

Scheme 7 Asymmetric synthesis of tarchonanthuslactone.



A convenient synthesis of styryllactone derivatives (+)-goniodiol, (–)-epigoniodiol, and (+)-de-
oxygoniopypyrone was also developed utilizing asymmetric alkoxyallylboration and RCM pathways as
key steps (Scheme 9) [22].

We extended the tandem “allyl”boration-RCM reactions to include crotylborated products during
the synthesis of potent anticancer agent discodermolide (Fig. 5) and its analogs. 
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Scheme 8 Asymmetric synthesis of β-hydroxy-δ-lactones.

Scheme 9 Asymmetric synthesis of styryllactone derivatives.

Fig. 5 Discodermolide, a potent anticancer agent.



The preparation of the subunits A, B, and C of discodermolide was achieved via “allyl”boration
chemistry. As can be seen from the following schemes, sub-units A and C were prepared via crotyl-
boration-RCM methodology (Schemes 10, 11) [32].

CONCLUSION 

We have discussed the beginnings and modern developments in asymmetric “allyl”boration chemistry.
We have also discussed more recent application of the product homoallyl alcohols derived from such
“allyl”boration reactions. The combination of allylboration and RCM has been highly successful for the
syntheses of several natural products, particularly complex natural products possessing important me-
dicinal properties. 
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Scheme 10 Synthesis of subunit A of discodermolide.

Scheme 11 Synthesis of subunit C of discodermolide.
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