
Pure Appl. Chem., Vol. 76, No. 1, pp. 231–240, 2004.
© 2004 IUPAC

231

Calculation of the free energy of solvation from
molecular dynamics simulations*

Paulo F. B. Gonçalves and Hubert Stassen‡

Grupo de Química Teórica, Instituto de Química, Universidade Federal do Rio
Grande do Sul, 91540-000 Porto Alegre-RS, Brazil

Abstract: Molecular dynamics simulation has been employed in the computation of the free
energy of solvation for a large number of solute molecules with different chemical function-
alities in the solvents water, acetonitril, dimethyl sulfoxide, tetrahydrofuran, and carbon
disulfide. The free solvation energy has been separated into three contributions: the work
necessary to create a cavity around the solute in the solvent, the electrostatic contribution,
and the free energy containing the short-range interactions between solute and solvent mol-
ecules. The cavitational contribution was computed from the Claverie–Pierotti model applied
to excluded volumes obtained from nearest-neighbor solute–solvent configurations treating
the solvent molecules as spherical. The electrostatic term was calculated from a dielectric
continuum approach with explicitly incorporating the solvent’s partial charges. The short-
range contribution to the free solvation energy was obtained from the force field employed
in the simulations. For solutions with available experimental data for the free energy of sol-
vation, we found a satisfactory agreement of the computed free solvation energies and the ex-
perimental data set.

INTRODUCTION

The free energy of solvation ∆Gsolv represents a very important property for the thermodynamical de-
scription of a solution with impact in the chemical, biological, and pharmaceutical sciences. From the
theoretical point of view, several approaches have been developed to predict ∆Gsolv. Quite generally, the
theories concerning the solvation process can be classified by explicitly or implicitly taking into account
the solvent molecules. In the implicit treatment of the solvation process, the solvent is represented by a
dielectric continuum in which the solute is embedded, whereas the explicit description of the solvation
considers particularities of the real liquid configuration. 

The choice of a distinct model for the solvation process depends on the compromise between
computational cost and accuracy in the desired property. Implicit solvation models are computationally
fast and can be applied to quantum mechanical calculations for the dissolved solute by a perturbation
formalism permitting the elucidation of quantum chemical properties in solution. Typical examples for
this methodology are described by several recent reviews [1]. On the other hand, explicit solvation mod-
els are more rigorous. However, considering explicitly the solvent molecules, the lower computational
efficiency limits the practical application to those properties that are available from classical simulation
studies of the solvation process. In this context, one might cite solvation studies based on free-energy
perturbation [2] or thermodynamic integration [3] that are coupled to molecular dynamics (MD) or
Monte Carlo computer simulations. 
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September 2002. Other presentations are published in this issue, pp. 1–261.
‡Corresponding author: E-mail: gullit@iq.ufrgs.br



In the present manuscript, we combine the explicit treatment of solvation with some basic ideas
usually involved in implicit solvation models. This approach to ∆Gsolv has been described in details pre-
viously [4,5] and is here further explored by incorporating the solvents tetrahydrofuran (THF), dimethyl
sulfoxide (DMSO), carbon disulfide (CS2), and acetonitril. Also, additional results for the solvent water
are presented. Therefore, MD simulations on diluted solutions of solutes with different chemical func-
tionalities in these solvents have been performed. From the trajectories, we have computed ∆Gsolv sep-
arated into a cavitational contribution, an electrostatic term, and a short-range portion containing the
van der Waals-like interactions between solute and solvent molecules. 

In the next section, we introduce briefly the theoretical essentials in our approach to the free en-
ergy of solvation. It is not our purpose to enter here into all the theoretical and algorithmic details of
the procedures involved in the computation of ∆Gsolv. However, in order to discuss the possibilities and
limitations of our method, we briefly review some basic assumptions of our approach in the theoretical
section. More theoretical and algorithmic information can be found in ref. [5]. Afterwards, the compu-
tational details of the MD simulations are summarized. Results are presented and critically discussed,
before finishing the article with some conclusive remarks.

THEORETICAL BACKGROUND

The possibility of studying an experimental property separated into partial contributions not accessible
by experiment is one of the motivations for performing computer simulations. In the case of the free en-
ergy of solvation, three distinct physical contributions to ∆Gsolv can be sorted out [6]: (i) the free-en-
ergy ∆Gcav for the creation of the excluded volume for the solvent S around the solute M, (ii) the free-
energy ∆Gel related to the formation of electrostatic interactions between M and S, and (iii) a
short-range free-energy ∆Gsr containing the repulsive and attractive van der Waals-like interactions be-
tween M and S,

(1)

In eq. 1, we assume that the solute’s Born–Oppenheimer surface for the gas phase is maintained
in the liquid phase and that the solute’s partition function for nonelectronic degrees of freedom are not
changed when introducing M into S. Especially in the case of the translational partition function, this
assumption is only justified when the accessible volume for the solute in solution corresponds to the
gas-phase volume. Otherwise, a so-called liberation term has to be added to eq. 1 [7].

In the following, we are considering a given configuration for the solution of one molecule M in
N molecules of S. The cavity around M is created assuming the solvent molecules as spherical (not in
the simulations, but only in the cavity creation). Each of the solute’s atoms is represented by a sphere
of radius ri. Particularities of the liquid state are included by defining ri as the geometric mean of the
distance between the i-th solute’s atom to the nearest center of mass of a solvent molecule. Afterwards,
the GEPOL algorithm [8] is applied to the solute described by its set of spheres with radii ri. Smaller
spheres (with a minimum radius of 0.01 Å) are added to interspherical contact regions. Removing the
overlap between spheres, the surface area Ai is obtained for each sphere. The sum of all the Ais defines
the solvent accessible surface area of the solute.

The corresponding cavitational free energy can be computed as the sum over the solute’s Ns
spheres with cavitational free energies ∆Gcav,i weighted by its solvent accessible surface area fraction
[9], 

(2)

with ∆Gcav,i defined from the scaled particle theory [10] as the cavitation free energy for a sphere with
radius ri dissolved in a solvent composed by spheres with radii rs. Note that the partial ∆Gcav,i depend
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in addition to the size of solvent molecules on the thermodynamic state defined by temperature, pres-
sure (1 atm), and number density of the solvent. 

In order to compute the electrostatic free energy ∆Gel, the solute’s cavity created as described
above has been used. Therefore, we divided the surfaces of each sphere belonging to the solute into
60 tessera. An apparent surface charge (ASC) distribution is obtained by projecting the solute’s point
charges onto the center of each tesserae belonging to the solvent accessible surface area. The interac-
tion between the ASCs qi defines the electrostatic gas-phase free-energy G0,

(3)

where we have used Vmol in order to express the electrostatic potential emanated by all the other ASCs.
Bringing the ASCs into the liquid phase, a charge reorganization process is initiated due to addi-

tional electrostatic potentials stemming from the solvent. In our approach [5], the solvent is represented
by a dielectric continuum with dielectric constant ε. In order to account empirically for some anisotropy
and distance dependence in ε, we added the external potential Vext from all the solvent’s point charges.
Thus, as a result, the reorganized ASCs can be computed by [5]

(4)

The new ASCs, qi, give rise to a different molecular potential Vmol. As shown in ref. [5], a self-consis-
tent iteration scheme applied to the qi reaches rapidly convergency. The resulting qi, corrected by re-
quirement that the ASC distribution corresponds to a neutral molecule, is used to compute the electro-
static free energy [5],

(5)

with the prime indicating liquid-state properties.
The short-range contribution ∆Gsr due to van der Waals-like interactions of the solute and the sol-

vent is calculated from the nonelectrostatic interactions as defined by the force field applied to the sim-
ulations. Following Floris et al. [15], ∆Gsr is written as the average for the nonelectrostatic interactions
between the solute and the solvent molecules,

(6)

where rαβ is the distance between the atom α of the solute and the atom β of the i-th solvent molecule
interacting by the pair potential u(rαβ ).

The three contributions to ∆Gsolv as defined by the eqs. 2, 5, and 6 can easily be sampled as an
experimental average along a trajectory for the solution created by MD simulations. For a detailed dis-
cussion of the fluctuations involved in ∆Gsolv and its contributions from eq. 1 during a MD simulation,
we refer to ref. [4].

COMPUTATIONAL DETAILS

MD simulations on diluted solutions (one solute in 255 solvent molecules) have been performed in the
NVT ensemble. The molecules were arranged in a cubic box with dimensions corresponding to the ex-
perimental densities of the solvents [11]. A spherical cutoff corresponding to half of the cube’s side
length was employed in the computation of all the distance-dependent properties. The usual periodic
boundary conditions and minimum image conventions were applied. Long-range electrostatic interac-
tions were corrected by a standard reaction field [12]. Starting from initial configurations defined by a
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randomly perturbed fcc lattice structure with random velocities, several thousands of time steps have
been used in order to equilibrate the solution at the desired temperature of 298 K. The equations of mo-
tion were resolved with a leap-frog algorithm [13] using a time step of 2 × 10–15 s. The temperature was
held constant by the Nosé–Hoover thermostat [14]. Some computational speed up has been achieved by
the use of a neighborhood list that was updated in intervals of 10 integration time steps. The production
runs were expanded to 120–140 ps. In intervals of 50 time steps, we have sampled the free energy of
solvation. The choice of this large interval in the sampling procedure has been adopted in order to com-
pute ∆Gsolv from configurations that can be considered as statistically independent. In the simulations,
all the molecules have been treated as rigid. Thus, in our approximation to ∆Gsolv, we transferred per-
fectly the gas-phase geometry of the solute into the liquid phase. 

The molecular geometries of the solutes were obtained from ab initio calculations using
MP2/augccTVZ basis functions with the Gaussian98revA9 program [16]. Atomic partial charges were
computed as ChelpG charges. These charges were employed in the calculation of electrostatic inter-
molecular interactions. In addition, the ChelpG charges were used as the initial guess for the estimation
of the electrostatic contribution to ∆Gsolv. Nonelectrostatic intermolecular interactions involving the
solute molecules were taken from the all-atom OPLS force field [17]. For the solvents, we also have
chosen the OPLS force field with the exception of DMSO that has been described by the 4-center
Lennard–Jones plus Coulomb potential of van Gunsteren et al. [18], CS2 that was modeled by the 3-cen-
ter Lennard–Jones potential of Tildesley and Madden [19], and water that has been treated as
SPC/E water [20]. All cross interaction parameters between solutes and solvent molecules were ob-
tained from the Lorentz–Berthelot mixing rules [13]. 

The charge models as defined by the potential models have also been used in the computation of
the external potential Vext (r) from eq. 4. Only in the case of CS2 described by a charge-free potential
model, ChelpG charges were obtained from ab initio calculations at the MP2/aug-ccTVZ level and uti-
lized in the computation of Vext (r).

RESULTS AND DISCUSSION

The solvation free-energy ∆Gsolv decomposed into the electrostatic, short-range, and cavitational con-
tributions as illustrated by eq. 1 has been calculated from the MD simulations utilizing a large number
of configurations along the trajectory for the solutions. Thus, the computed ∆Gsolv as well as its con-
tributions ∆Gel, ∆Gsr, and ∆Gcav have been accurately averaged for all the solutions. The computation
of ∆Gsolv for a given configuration of the solution was initiated by searching the shortest distances be-
tween the solute’s atoms and the center of mass of the solvent molecules. These distances have been
used to define the excluded volume for the solvent around the solute by the GEPOL algorithm. In terms
of pair-distribution functions [21], the averaged excluded volume reflects the first non-zero entry in the
pair distribution function for the considered solute’s atom and the center of mass of the solvent. As
pointed out in the theoretical section, the created cavity representing the solute in the solution has been
used in the estimate of ∆Gel. The short-range term ∆Gsr was computed by averaging all the solute–sol-
vent Lennard–Jones interactions.

In Table 1, we have summarized ∆Gsolv as well as its contributions ∆Gcav, ∆Gel, and ∆Gsr for
30 solutes dissolved in water. Additionally, experimental free energies of solvation ∆Gexp from ref. [22]
are included in Table 1. The agreement between the calculated and the experimental free energies of
solvation is excellent for all the solutes. From the statistical error in the simulated ∆Gsolv, it becomes
evident that the computed ∆Gsolv for most of the solutes match the experimental findings within the
error bar. The comparison between experimental and computed solvation free energies is also graphi-
cally illustrated in Fig. 1. The data points in this figure are spread about the theoretical line for perfect
agreement between computed and experimental free energies of solvation. Thus, the calculated ∆Gsolv
are not affected by any systematical deviation from the experimental values.
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Table 1 Calculated free energies of solvation ∆Gsolv and their contributions from eq. 1 for
the solvent water. Also given are experimental free energies of solvation ∆Gexp [22]. In
the calculation of ∆Gsolv, water is described by ε = 78.36 [11] possessing a radius
rs = 1.385 Å [24]. All free energies are in kcal/mol.

Solute ∆Gel ∆Gsr ∆Gcav ∆Gsolv ∆Gexp

1,2–Ethanediol –8.1 ± 0.9 –7.9 ± 0.2 8.3 ± 0.6 –7.7 ± 0.6 –7.7
Acetamide –10.6 ± 0.5 –10.6 ± 0.3 11.3 ± 0.3 –10.0 ± 0.1 –9.7
Acetophenone –6.0 ± 0.7 –7.8 ± 0.2 9.9 ± 0.2 –3.8 ± 0.6 –4.6
Acetonitrile –5.9 ± 0.5 –7.4 ± 0.8 8.1 ± 0.8 –4.4 ± 0.4 –3.9
Butanoic acid –8.4 ± 0.5 –11.8 ± 0.8 14.1 ± 0.5 –6.2 ± 0.5 –6.4
Ethanoic acid –7.5 ± 0.3 –9.2 ± 0.3 10.2 ± 0.5 –6.6 ± 0.2 –6.7
Propanoic acid –7.5 ± 0.9 –7.8 ± 0.7 9.1 ± 0.2 –6.3 ± 0.4 –6.5
Water –7.4 ± 0.3 –4.1 ± 0.2 4.8 ± 0.2 –6.7 ± 0.3 –6.3
Ammonia –6.2 ± 0.8 –3.6 ± 0.6 4.6 ± 1.0 –5.2 ± 0.2 –4.3
Benzenethiol –3.8 ± 0.7 –10.7 ± 0.2 12.6 ± 0.1 –1.9 ± 0.1 –2.6
Cyclohexane –0.1 ± 0.4 –5.9 ± 0.3 7.8 ± 0.2 1.8 ± 0.3 1.2
Vinyl chloride –1.9 ± 0.7 –6.7 ± 0.6 8.2 ± 0.4 –0.4 ± 0.2 –0.6
Chloroform –6.1 ± 0.6 –5.9 ± 0.7 10.0 ± 0.6 –3.0 ± 0.2 –1.1
Methyl chloride –1.1 ± 0.3 –8.7 ± 0.5 9.1 ± 0.6 –0.7 ± 0.1 –0.6
Dichloromethane –3.5 ± 0.1 –9.2 ± 0.2 10.8 ± 0.2 –1.9 ± 0.2 –1.4
Dimethylamine –5.1 ± 0.9 –6.1 ± 0.4 6.6 ± 0.6 –4.6 ± 0.4 –4.3
1,4–Dioxan –7.3 ± 0.94 –8.3 ± 0.9 10.9 ± 0.3 –4.8 ± 0.4 –5.1
E–Dichloroethene –4.9 ± 0.7 –4.3 ± 0.3 7.4 ± 0.2 –1.8 ± 0.8 –0.8
Ethanol –6.4 ± 0.6 –7.1 ± 1.0 9.3 ± 0.2 –4.3 ± 0.5 –5.0
Glycerol –11.9 ± 0.5 –6.5 ± 0.9 10.5 ± 0.7 –7.9 ± 1.0 –9.1
Methanol –6.8 ± 0.3 –6.4 ± 0.2 8.1 ± 0.4 –5.1 ± 0.1 –5.1
Methanethiol –3.8 ± 0.2 –8.5 ± 0.2 11.4 ± 0.3 –0.9 ± 0.3 –1.2
Methylamine –5.9 ± 0.3 –8.5 ± 0.2 9.6 ± 0.3 –4.8 ± 0.2 –4.6
Dimethyl ether –2.5 ± 0.7 –11.5 ± 0.6 11.3 ± 0.6 –2.7 ± 0.1 –1.9
Neopentane 0.0 ± 0.6 –14.4 ± 0.4 16.1 ± 0.8 1.6 ± 0.6 2.5
n–propanol –6.7 ± 0.4 –6.8 ± 0.5 9.2 ± 0.8 –4.3 ± 0.3 –4.8
Propane –0.1 ± 0.1 –5.4 ± 0.7 6.9 ± 0.7 1.5 ± 0.2 2.0
Tetrahydrofuran –4.3 ± 0.2 –14.8 ± 1.0 15.3 ± 0.7 –3.8 ± 0.4 –3.5
Thiophenol –4.1 ± 0.3 –12.0 ± 0.5 14.2 ± 0.7 –1.9 ± 0.1 –2.6
Trichloroethane –1.1 ± 0.4 –6.5 ± 0.5 8.1 ± 0.5 0.5 ± 0.2 –0.3

The observed agreement between the experimental and calculated free energies of solvation in the
solvent water justifies the approximations involved in the theoretical pathway to ∆Gsolv. The water mol-
ecule is sufficiently spherical, or at least, does not exhibit larger anisotropies in its molecular shape that
contradict the spherical approximation to the solvent molecule in the cavitational process. In addition,
the large dielectric constant for liquid water turns the factor (ε – 1)/ε in eq. 4 almost equal to one and,
thus, facilitates the balancing of possible dielectric anisotropies by the external potential Vext (r) in the
electrostatic portion ∆Gel. However, ∆Gel depends on the size and shape of the created cavity. With
∆Gcav being necessarily a positive quantity and ∆Gel quite generally negative, there is a possibility of
cancellation of errors between ∆Gcav and the electrostatic term.

Quite generally, a larger cavity is expected to produce larger ∆Gcav. In the quantum mechanical
approach to ∆Gsolv by the polarizable continuum model [1], it has been observed that larger cavities
cause more negative ∆Gel simply due to the increasing distance between the solute’s nuclei and the ASC
distributions. As a consequence, in implicit solvation models, the ASCs become more effected by the
polarization of the surrounding dielectric. Our data from Table 1 indicate that larger ∆Gcav are not al-
ways accompanied by more negative ∆Gel. The use of shortest atom-solvent distances in our solvation
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model introduces additional geometrical anisotropies in the cavity that are also reflected in more
anisotropic ASC distributions defining ∆Gel.

Comparing ∆Gcav for some of solutes listed in Table 1, one notes several inconsistencies in cor-
relating the solute’s size with the cavitational free energy. As an example, we cite the series of acids:
acetic acid (∆Gcav = 10.2 kcal/mol), propanoic acid (∆Gcav = 9.1 kcal/mol), and butanoic acid
(∆Gcav = 14.1 kcal/mol). Similar problems with the cavitational term obtained from the GEPOL cavi-
ties have already been observed in implicit solvation models for n-alcohols in water [23] and have been
related to weaknesses in the GEPOL algorithm for the cavity creation.

In Table 2, we present our results for 19 solutes in DMSO. For this solvent, there are only a few
experimental solvation free energies available. Although the DMSO molecule differs more from the
spherical symmetry than water, the comparison of the computed and experimental free energies demon-
strates that our solvation model predicts ∆solv accurately within the error bar. However, the calculated
∆Gsolv are more negative than the experimental free energies of solvation for the five solutes with avail-
able experimental data. Due to the lack of experimental data, we cannot conclude that any systematical
error affects our solvation model as has been observed for the solvent benzene [4] composed by planar
molecules. Comparing some ∆Gcav for molecules with similar chemical functionalities, the GEPOL
cavities in liquid DMSO reflect the expected tendency in producing larger ∆Gcav for larger solutes (see,
e.g., the alcohols in Table 2). Also comparing ∆Gcav with the results for water from Table 1 for com-
mon solutes, the cavitational contributions in Table 2 reflect the size effect of the solvent molecules.

For the solvent THF, we summarized our free energies of solvation in Table 3. Again, the few
available experimental ∆Gexp are in good agreement with our computed ∆Gsolv. The cavitational con-
tribution is larger than for DMSO due to the increased radius for the THF molecule. Similar to the water
case, inconsistencies in ∆Gcav are observed for THF, for example, in the series of n-alcohols.
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Fig. 1 Experimental free energies of solvation ∆Gexp against calculated free energies of solvation ∆Gsolv for the
solvent water. The line represents an optical guideline for perfect correlation. The free energies are given in
kcal/mol.



Table 2 Calculated free energies of solvation ∆Gsolv and their contributions from eq. 1 for
the solvent DMSO. Also given are experimental free energies of solvation ∆Gexp [22],
when available. ∆Gsolv was calculated using ε = 46.70 [11] and the radius rs = 2.415 Å
[24] for DMSO. The free energies are in kcal/mol.

Solute ∆Gel ∆Gsr ∆Gcav ∆Gsolv ∆Gexp

1,4–Dioxan –5.3 ± 0.3 –13.5 ± 0.5 13.5 ± 0.4 –5.8 ± 0.8 –4.90
2–Propanol –8.2 ± 0.7 –8.0 ± 0.4 11.1 ± 0.4 –5.0 ± 0.5 –
Anisole –10.2 ± 0.4 –13.9 ± 0.5 15.9 ± 0.2 –8.2 ± 0.7 –
Benzene –5.3 ± 0.6 –12.4 ± 0.6 12.7 ± 0.3 –5.0 ± 0.1 –
Butanone –4.0 ± 0.4 –14.0 ± 0.4 13.2 ± 0.5 –4.8 ± 0.5 –4.23
Diethyl ether –6.1 ± 0.4 –12.3 ± 0.5 15.1 ± 0.2 –3.3 ± 0.1 –
Dimethyl ether –6.4 ± 0.5 –8.6 ± 0.4 9.8 ± 0.5 –5.2 ± 0.2 –
Ethanol –5.8 ± 0.3 –10.2 ± 0.3 10.4 ± 0.6 –5.7 ± 0.4 –5.52
Ethylbenzene –5.5 ± 0.5 –15.7 ± 0.7 17.0 ± 0.3 –4.1 ± 0.5 –
Phenol –11.4 ± 0.7 –10.9 ± 0.5 13.2 ± 0.6 –9.0 ± 0.4 –
Fluorobenzene –6.7 ± 0.8 –12.1 ± 0.5 13.6 ± 0.7 –5.1 ± 0.5 –
m–Xylene –5.8 ± 0.4 –15.0 ± 0.7 17.4 ± 0.4 –3.4 ± 0.3 –
n–Butanol –8.4 ± 0.6 –11.2 ± 0.4 14.4 ± 0.4 –5.2 ± 0.3 –
n–Octane –2.4 ± 0.4 –23.3 ± 0.6 22.7 ± 0.3 –3.0 ± 0.5 –2.84
n–Propanol –7.2 ± 0.7 –9.6 ± 0.4 12.2 ± 0.4 –4.7 ± 0.6 –
p–Xylene –5.8 ± 0.4 –14.6 ± 0.5 17.3 ± 0.2 –3.1 ± 0.5 –
Tetrahydrofuran –9.0 ± 0.5 –9.1 ± 0.4 12.6 ± 0.5 –5.5 ± 0.7 –
Tetrahydropyran –8.2 ± 0.5 –11.5 ± 0.6 14.2 ± 0.5 –5.5 ± 0.4 –
Toluene –3.4 ± 0.3 –16.1 ± 0.5 14.9 ± 0.6 –4.6 ± 0.4 –4.42

Table 3 Calculated free energies of solvation ∆Gsolv and their contributions from eq. 1 
for the solvent THF. Also given are experimental free energies of solvation ∆Gexp [22],
when available. ∆Gsolv was calculated using ε = 7.58 [11] and the radius rs = 2.90 Å [24]
for THF. The free energies are in kcal/mol.

Solute ∆Gel ∆Gsr ∆Gcav ∆Gsolv ∆Gexp

1,4-Dioxan –7.3 ± 0.4 –11.7 ± 0.4 14.7 ± 0.4 –4.3 ± 0.6 –5.17
2–Propanol –8.7 ± 0.4 –13.6 ± 0.8 16.0 ± 0.4 –6.2 ± 0.2
Anisole –9.2 ± 0.4 –16.5 ± 0.8 17.0 ± 0.6 –8.6 ± 0.9
Benzene –6.1 ± 0.6 –12.9 ± 1.0 13.8 ± 0.7 –5.3 ± 0.3
Butanone –7.3 ± 1.0 –11.5 ± 0.9 14.8 ± 0.5 –4.0 ± 0.5 –4.54
Dichloromethane –6.5 ± 0.6 –12.4 ± 0.8 12.9 ± 0.8 –6.0 ± 0.2
Diethyl ether –6.7 ± 0.8 –12.8 ± 0.8 15.8 ± 0.4 –3.7 ± 0.7
Dimethyl ether –6.4 ± 0.5 –12.3 ± 0.9 12.8 ± 0.5 –5.9 ± 0.1
Ethanol –6.5 ± 0.3 –12.8 ± 0.3 14.1 ± 0.7 –5.2 ± 0.4 –4.56
Ethylbenzene –6.7 ± 0.6 –16.3 ± 0.5 17.9 ± 0.3 –5.1 ± 0.3
Phenol –9.1 ± 0.7 –14.2 ± 0.8 13.1 ± 0.8 –10.1 ± 0.2
m–Xylene –5.5 ± 0.4 –17.8 ± 0.5 18.9 ± 0.5 –4.4 ± 0.2
n–Butanol –9.8 ± 0.5 –13.7 ± 0.4 18.5 ± 0.4 –5.0 ± 0.2
n–Octane –7.1 ± 0.4 –15.9 ± 0.3 17.5 ± 0.4 –5.5 ± 0.2 –5.39
n–Pentanol –10.0 ± 0.6 –11.1 ± 0.5 15.1 ± 0.9 –6.0 ± 0.3
n–Propanol –8.1 ± 4.1 –10.9 ± 0.5 14.4 ± 0.5 –4.5 ± 0.2
p–Xylene –5.7 ± 1.0 –16.9 ± 0.8 18.0 ± 0.2 –4.7 ± 0.7
Tetrahydrofuran –9.8 ± 0.5 –11.0 ± 0.5 14.1 ± 0.5 –6.7 ± 0.5
Tetrahydropyran –9.7 ± 0.6 –11.5 ± 0.6 15.3 ± 0.6 –5.9 ± 0.5
Toluene –7.4 ± 0.3 –13.5 ± 0.4 14.9 ± 0.7 –6.0 ± 0.6 –5.50
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Finally, in Tables 4 and 5, we present the ∆Gsolv obtained from simulations on diluted solutions
in CS2 and acetonitril, respectively. In both cases, a satisfactory agreement with the few experimental
data has been achieved. Both solvent molecules are more rod-like than spherical. Thus, one would ex-
pect some difficulties in the computation of the cavitational contribution. CS2 possesses a larger mo-
lecular radius than acetonitril. However, the computed cavitational contributions in acetonitril are sig-
nificantly larger than in CS2 and appear not to be correlated with the solvent’s molecular radius. We
relate this observation again to problems in the creation of the cavity by the GEPOL algorithm that are
partially cancelled by the electrostatic contribution ∆Gel as mentioned above.

Table 4 Calculated free energies of solvation ∆Gsolv and their contributions from eq. 1 for
the solvent CS2. Also given are experimental free energies of solvation ∆Gexp [22], when
available. ∆Gsolv was calculated using ε = 4.75 [11] and the radius rs = 2.55 Å [24] for
CS2. The free energies are in kcal/mol.

Solute ∆Gel ∆Gsr ∆Gcav ∆Gsolv ∆Gexp

1,4-Dioxan –4.7 ± 0.5 –12.5 ± 0.6 12.2 ± 0.8 –5.0 ± 0.6 –4.67
Ethanoic acid –4.6 ± 0.2 –10.5 ± 0.5 11.2 ± 0.3 –3.9 ± 0.9 –2.98
Benzene –9.0 ± 0.4 –6.1 ± 0.7 10.1 ± 0.4 –5.0 ± 0.8
Butanone –4.5 ± 0.6 –9.2 ± 0.4 11.5 ± 0.1 –2.1 ± 0.7 –3.85
Ethanol –4.5 ± 1.0 –10.7 ± 0.6 11.5 ± 0.9 –3.7 ± 0.8 –2.95
Phenol –8.8 ± 0.8 –11.3 ± 1.0 13.0 ± 0.5 –7.1 ± 0.9 –6.27
n–Octane –6.8 ± 0.7 –14.8 ± 0.7 16.5 ± 0.4 –5.1 ± 0.3 –5.68
Tetrahydrofuran –9.0 ± 0.2 –8.5 ± 0.5 11.7 ± 0.8 –5.8 ± 0.6
Tetrahydropyran –8.8 ± 0.8 –11.9 ± 0.8 14.8 ± 0.9 –5.9 ± 0.7
Toluene –6.1 ± 0.8 –9.2 ± 0.6 10.4 ± 0.5 –4.9 ± 0.4 –5.39

Table 5 Calculated free energies of solvation ∆Gsolv and their contributions from eq. 1 for
the solvent acetonitril. Also given are experimental free energies of solvation ∆Gexp [22],
when available. ∆Gsolv was calculated using ε = 37.50 [11] and the radius rs = 1.87 Å
[24] for acetonitril. The free energies are in kcal/mol.

Solute ∆Gel ∆Gsr ∆Gcav ∆Gsolv ∆Gexp

1,4-Dioxan –7.4 ± 0.9 –12.9 ± 0.5 14.5 ± 0.6 –5.8 ± 0.4 –5.33
Anisole –7.1 ± 0.4 –16.1 ± 0.8 15.7 ± 0.8 –7.5 ± 0.8
Benzene –6.0 ± 0.6 –12.0 ± 0.4 13.8 ± 0.4 –4.2 ± 0.9
Butanone –5.1 ± 0.5 –14.6 ± 0.7 14.5 ± 0.5 –5.2 ± 0.5 –4.73
Diethyl ether –6.8 ± 0.5 –15.1 ± 0.3 17.7 ± 1.0 –4.2 ± 0.6
Dimethyl ether –6.3 ± 0.8 –11.9 ± 0.4 11.9 ± 0.7 –6.3 ± 0.5
Ethanol –6.2 ± 0.9 –10.6 ± 0.5 11.6 ± 1.0 –5.2 ± 0.7 –4.43
Phenol –9.8 ± 0.4 –13.9 ± 0.5 14.7 ± 0.9 –9.0 ± 0.6
n–Butanol –8.3 ± 0.7 –12.6 ± 0.5 15.8 ± 0.8 –5.0 ± 0.2
n–Octane –4.8 ± 0.8 –18.7 ± 0.5 19.5 ± 0.6 –4.1 ± 0.7 –3.57
n –Propanol –8.3 ± 0.9 –9.6 ± 0.8 13.7 ± 1.0 –4.2 ± 0.2
Tetrahydrofuran –8.7 ± 0.5 –12.3 ± 1.0 14.6 ± 0.7 –6.3 ± 0.8
Tetrahydropyran –8.1 ± 0.5 –13.0 ± 0.5 14.7 ± 0.5 –6.4 ± 0.6
Toluene –6.0 ± 0.7 –14.3 ± 0.3 15.1 ± 0.2 –5.2 ± 0.9 –4.68

The short-range contribution to the solvation free energy from Tables 1–5 reflect the number and
type of interactions sites on the solvent molecules. Although depending somehow on the choice of the
applied force fields, we believe that the numerical values for ∆Gsr are accurately obtained for the equil-
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ibrated solutions modeled by interaction parameters for the solvents that have been established directed
toward the equilibrium properties of the pure liquids.

CONCLUSIONS

In the present article, we have applied our methodology for the calculation of the solvation free energy
[4,5] to MD simulations on a variety of diluted solutions in different solvents. Although few experi-
mental data are available from the literature, our method is shown to predict the free energy of solva-
tion within an accuracy of approximately ±1 kcal/mol for solutions of small molecules in the solvents
water, DMSO, THF, CS2, and acetonitril.

The simulations were performed using all atom force fields for the solute and the solvent mole-
cules.

However, the adopted methodology to ∆Gsolv assumes solvents composed by spherical molecules
in the creation of the cavitation and the computation of the cavitational contribution to the free energy
of solvation by the scaled particle theory [10]. In solvents composed by molecules with anisotropies in
the molecular shape, this approach has led to some systematical deviations between experimental and
theoretical solvation free energies [5]. Several inconsistencies in the cavitational term ∆Gcav are also
observed in this study and affect also the electrostatic contribution ∆Gel obtained from the created cav-
ities. In most cases, an error in the positive contribution ∆Gcav is partially compensated by the negative
∆Gel.

In summary, our approach to the free energy of solvation previously tested for the solvents water
[4], CCl4, CHCl3, and benzene [5] has been extended to additional solvents. So far, our methodology
has been applied to various solvents composed by small molecules with a broad variety of molecular
shapes. Also, the tested solvents cover a broad range of dielectric constants. Thus, one might conclude
that our approach represents a promising tool for computing free energies of solvation from MD com-
puter simulations.
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