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Negative nonlinear effect in aquo
palladium catalysis depending on tropos
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controlled by chiral diaminobinaphthyl
activator*
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Abstract: Asymmetric activation of aquo Pd catalysts with tropos biphenylphosphine
(BIPHEP) ligands by a chiral diaminobinaphthyl (DABN) activator exhibits a remarkable
negative nonlinear effect, (–)-NLE, with higher catalytic efficiency than that achieved by
enantiopure atropos BINAP- or tropos BIPHEP-Pd catalysts without DABN activator.

In asymmetric catalysis [1], the design of chirally rigid atropisomeric (atropos) [2] ligand has long been
considered to be the key to establish high enantioselectivity and to increase the catalytic activity from
the achiral metal pre-catalyst (“ligand-accelerated catalysis” [3]). The chiral metal catalyst is prepared
from the pre-catalyst via ligand exchange with usually atropos ligands, such as binaphthylphosphines
(BINAP). The asymmetric catalysts thus prepared can be further transformed into highly activated cat-
alysts by association with chiral activators (“asymmetric activation” [4]). This process is particularly
useful in racemic catalysis, through enantiomer-selective activation of the racemic catalyst [5]. A “chi-
ral activator” selectively activates one enantiomer of a racemic catalyst, which can then attain an
enantioselectivity higher than that achieved with the enantiopure catalyst, in addition to higher catalytic
efficiency. We report here a further advanced strategy for asymmetric activation using chirally flexible
tropos biphenylphosphine (BIPHEP) ligands by a chiral diaminobinaphthyl (DABN) activator to give
higher catalytic efficiency than that using enantiopure atropos BINAP or tropos BIPHEP catalysts with-
out DABN activator (Fig. 1). Aquo palladium complex bearing, at the outset, racemic but tropos
BIPHEP ligands [BIPHEP-Pd(OH2)2] was eventually converted to an enantiopure (R)-BIPHEP-Pd
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Fig. 1 Tropos and atropos aquo Pd complexes and chiral activators.



complex [6] with (R)-DABN. A remarkable level of negative nonlinear effect, (–)-NLE [7], is shown
depending on BIPHEP chirality in the Diels–Alder (DA) reaction [8].

The selectivity in complexation of BIPHEP-Pd(OH2)2 with a diamine activator was first exam-
ined. With 0.5 equiv of DABN, 9:1 mixture of BIPHEP-Pd/DABN complexes was observed, with
(R)-BIPHEP-Pd/(R)-DABN as the major. The tropo-inversion, inversion of chirality of the tropos lig-
and, was next examined on the enantiomeric BIPHEP-Pd complexes obtained upon addition of an
equimolar amount of (R)-DABN to racemic BIPHEP-Pd(OH2)2 complexes (Fig. 2). No isomerization
was seen at room temperature (r.t.); the 1:1 mixture of enantiomeric DABN complexes did not epimer-
ize at r.t. over 8 days, but exhibited tropo-inversion at 80 °C after 12 h, leading exclusively to the fa-
vorable (R)-BIPHEP-Pd/(R)-DABN. The (R)/(R)-configuration of Pd(biphep)(dabn) was confirmed by
1H and 31P NMR comparison with the Pd[(R)-biphep][(R)-dabn](SbF6)2 obtained from the
Pd[(R)-biphep][(CH3CN)2](SbF6)2 [6]. 

The BIPHEP-Pd/DABN complexes can be readily formed by ligand exchange between OH2 and
DABN on the Pd center. We theoretically estimated the ease of such a ligand-exchange process. The
BIPHEP-Pd(OH2)2 and BIPHEP-Pd/DABN complexes were optimized using ONIOM method, which
has been proven to be a powerful tool for the theoretical treatment of large molecular systems [9,10].
The optimized BIPHEP moieties were slightly changed by coordination of DABN instead of OH2; the
distance of P-Pd was lengthened, and the dihedral angle around the chiral axis was increased (Fig. 3).
The interaction energy (∆E) between (R)-BIPHEP-Pd fragment and two molecules of OH2 or
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Fig. 2 Tropo-inversion of BIPHEP-Pd/DABN complex.

Fig. 3 3D structures of (R)-BIPHEP-Pd(OH2)2 and (R)-BIPHEP-Pd/(R)-DABN.



(R)-DABN were estimated by single point energy calculation at the B3LYP/631SDD level (Fig. 4). The
∆E in the case of DABN (–167.7 kcal/mol) is much larger than that in the case of OH2 (–64.1 kcal/mol).
This indicates that DABN can readily exchange OH2 in agreement with the experimental results.

The BIPHEP-Pd/DABN complexes showed a remarkable (–)-NLE, depending on the enantio-
purity of the tropos BIPHEP ligands. The 1:1 diastereomeric mixture of Pd[(R)-biphep][(R)-dabn] and
Pd[(S)-biphep][(R)-dabn] (racemic in BIPHEP ligand) with DABN activator can be used as an activated
catalyst for the DA reactions to give (1S)-DA product in a higher chemical yield (64 %) but with a very
low level of enantioselectivity (9 % ee) (Table 1, entry 1). Even with a 50 % ee of BIPHEP, a very low
enantioselectivity (10 % ee) was again obtained to give further the enantiomeric (1R)-DA product
(entry 2). These results imply a remarkable level of (–)-NLE, depending on the enantiopurity of the
BIPHEP ligand controlled by DABN activator. 

In the presence of water, aquo palladium complexes are generally formed and often show very
low Lewis acidity [11]. However, upon addition of diamines, water was found to be replaced with di-
amines to allow complexation of substrates and hence to increase the catalytic activity of the aquo Pd
catalyst. This asymmetric activation was exemplified by the higher chemical yields and enantioselec-
tivity (94 % ee) in the DA reaction between ethyl glyoxylate and cyclohexadiene attained by BIPHEP-
Pd/DABN complex (Table 1, entry 3) than those attained by the atropos and enantiopure BINAP-Pd cat-
alyst without DABN activator, which gave only trace amount of products (Table 2, entry 1). Indeed,
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Fig. 4 Interaction energies of (R)-BIPHEP-Pd(OH2)2 and (R)-BIPHEP-Pd/(R)-DABN at the B3LYP/631SDD
level.

Table 1 (–)-NLE in glyoxylate-DA reaction.



(R)-DABN activated the enantiopure (R)-BINAP-Pd catalyst to give the DA adduct in an enantiopure
form (>99 % ee 1R) (entries 1 vs. 3) but in lower chemical yield (70 %) than that with (S)-BINAP-Pd
catalyst (86 %, >99 % ee 1S) (entries 3 vs. 4).

Asymmetric activation thus provides a strategy for the use of tropos ligands without asymmetric
synthesis or resolution even in the presence of water to establish a remarkable (–)-NLE in DA reactions.
Higher enantioselectivity and catalytic efficiency are attained by aquo BIPHEP-Pd complexes with
DABN than those achieved by enantiopure BINAP-Pd catalysts without DABN activator.
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Table 2 Asymmetric activation of (R)-2 by diamines.


