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Nonspecific sensor arrays (“electronic
tongue”) for chemical analysis of liquids

(IUPAC Technical Report)

Abstract: The history of the development of potentiometric sensors over the past
century demonstrates progress in constructing single, discrete (i.e., separate, to
distinguish from sensor arrays) ion sensors, which have been made as selective as
possible. Only a few types reveal high selectivity. However, easy measurement
procedure, with low cost and availability, give rise to the search for new ways for
their successful application. The present document describes a new concept for ap-
plication of potentiometric multisensor systems, viz., sensor arrays for solution
analysis, and the performance of this new analytical tool—the “electronic tongue”.
The electronic tongue is a multisensor system, which consists of a number of low-
selective sensors and uses advanced mathematical procedures for signal process-
ing based on the pattern recognition (PARC) and/or multivariate analysis [artificial
neural networks (ANNs), principal component analysis (PCA), etc.]. Definitions
of the multisensor systems and their parameters are suggested. Results from the
application of the electronic tongue, both for quantitative and qualitative analysis
of different mineral water and wine samples, are presented and discussed.

Keywords: Sensors; chemical sensors; electronic tongue; potentiometric sensors;
technical report; IUPAC Analytical Chemistry Division.

1. INTRODUCTION

Selectivity of potentiometric sensors, such as ion-selective electrodes (ISEs), is defined by the selectiv-
ity coefficient, K 7 for the primary ion, i, against the interfering ion, j, in the Nikolsky—Eisenman equa-
tion

o RT iz
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where a; and a; are activity of the primary and interfering ion, respectively; K; ; is the selectivity coef-
ficient; E° is the sum of the standard potential of the electrode and the junction potential; E is the po-
tential difference for the electrochemical cell composed of the ion-selective and reference electrode; z;
and zj are charge numbers of the primary and interfering ion, respectively; and R, T, and F have their
usual meanings. This equation predicts a linear dependence of the sensor response, E, on the logarithm
of a function of the activity of the ions in solution.

Selectivity is very important and is high for some types of sensors. But in complex solutions (i.e.,
those containing many ions to which the electrodes are responsive), the measured potential difference
may not obey the Nikolsky—Eisenman equation. Application of low-selective sensor arrays along with
modern mathematical procedures for signal processing, which involve pattern recognition (PARC) and
multivariate analysis, provides a solution for the selectivity problem.

The history of potentiometric sensors can be divided into four periods [1,2] (Table 1). In the first
three of these periods, selective sensors were developed. In the most recent period, new analytical tools
called the “electronic nose” and “electronic tongue” were developed.
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Table 1 Milestones in potentiometric sensor development.

I. 1906-1937. pH glass electrode and ion-exchange theory Refs.
1906 Cremer: dependence of the cell potential difference on pH (glass membrane) [39]
1909 Haber, Klemensiewicz: development of a glass electrode [40]
1936 Beckman: commercialization of pH-meter [41]
1937 Nikolsky—Nikolsky equation and theory of operation of a glass electrode [42,43]
1937 Kolthoff: crystalline “electrode” [44]
1937 Nikolsky: crystalline membrane [45]

II. 1961-1969. Conventional ISEs and biosensors

1957 Eisenman: properties of glass electrode and Eisenmann—Nikolsky equation [46]
1958 Severinghaus, Bradley: gas-sensitive electrodes [47]
1961 Pungor: heterogeneous solid ISE [48]
1961 Eisenman: theory of glass electrode [49,50]
1962 Seiyama, Taguchi: semiconductor gas sensor [51-53]
1966 Frant, Ross: LaF;—electrode [54]
1966 Simon: liquid ISE with neutral carrier [55]
1967 Ross: ion-exchange membrane [56]
1969 Guibault, Montalvo: potentiometric biosensor [57]
1969 Baker, Trachtenberg: chalcogenide glass membrane for ISE [58]
1971 Moody, Thomas: PVC-based ISEs [59]

III. 1970 to present. Microelectronics in sensor development

1970 Bergveld: ISFET [60]
1975 Lundstrom: gasFET [61]
1976 Schenck: immunoFET [62]

IV. 1982 to present. Multisensor arrays and sensor systems

1982 Persaud, Dodd: electronic nose [4]
1992 Toko: “taste” sensor [63]
1995 Vlasov, Legin, D’ Amico, Di Natale: electronic tongue [5]

The aim of the present report is to show more general approaches to the analytical characteristics
of the sensor array of an electronic tongue and to recommend relevant definitions.

2. GENERAL CONCEPTS

The general concepts of the electronic tongue and electronic nose used for analysis of liquids and gases,
respectively, are similar. They involve application of an array of nonspecific or low-selective sensors in
order to produce analytically useful signals during the analysis of multicomponent matrices. The ra-
tionale for application of low-selective sensors is based on an analogy to biological organization of the
olfactory and taste systems in mammals. In the regions of the nose and tongue, there are millions of
nonspecific receptors that respond to different substances present in the gas and liquid phases. However,
only about 100 different types of olfactory receptors are known, while several dozens were identified in
the taste buds on tongues of mammals. The taste and odor signals from the receptors are transmitted to
the brain where they are processed by nets of neurons. As a result, the image of the sensed object is cre-
ated.

The idea of reproducing artificially the natural response of a human to environmental stimuli was
published in 1943 [3]. It can be treated as one of the first steps to build an “electronic brain” and arti-
ficial intelligence based on neural computing. The first analytical device that resulted from these trends
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was an electronic nose (1982) [4] applied to gas analysis. The next was an electronic tongue, which was
introduced in 1995 [5] and which can be considered as a promising device in quantitative and qualita-
tive analysis of multispecies solutions. Principal features of the two new sensor devices, i.e., the artifi-
cial nose and tongue, are: (i) application of sensor arrays comprising a certain number of nonspecific,
low-selective chemical sensors, (ii) application of PARC, including artificial neural network (ANN),
principal component analysis (PCA), etc., for processing of high-dimension signals produced by the
sensor arrays. However, the compositions and properties of the sensing materials used for electronic
nose and electronic tongue sensor arrays differ significantly. Therefore, development and consideration
of multisensor systems for analysis of gaseous and liquid matrices should be performed separately
rather than simultaneously.

3. CLASSIFICATION AND DEFINITIONS OF CHEMICAL SENSOR ARRAY DEVICES

In the literature, the following definition of the electronic tongue can be found [2]:

The electronic tongue is an analytical instrument comprising an array of nonspecific, low-selec-
tive, chemical sensors with high stability and cross-sensitivity to different species in solution, and an
appropriate method of PARC and/or multivariate calibration for data processing. Stability of sensor be-
havior and enhanced cross-sensitivity, which is understood as a reproducible response of a sensor to as
many species as possible, are of primary importance. If properly configured and trained (calibrated), the
electronic tongue is capable of recognizing the qualitative and quantitative composition of multispecies
solutions of different natures [2].

One can consider the electronic tongue a device for qualitative and quantitative analysis of com-
plex solutions. The history of application of various sensor arrays for solution analysis is described in
[2].

The history of development and features of the electronic nose are described in [6].

4. SENSING MATERIALS FOR SENSOR ARRAYS

Different types of chemical sensors can be used in the sensor arrays operating in the electronic nose and
electronic tongue.

In the electronic nose, usually some metal-oxide semiconductor materials (e.g., doped SnO,)
[7-9], conducting polymers (e.g., polypyrrole) [10—12], or metalloporphyrin films [13—14] are used.

Sensors based on various sensing principles can be employed in electronic tongues, the most
widespread being potentiometric, amperometric, or optical sensors [15]. Sensing materials used in elec-
tronic tongues may also vary significantly. Chalcogenide and oxide glasses and crystalline materials
have been used as membranes of potentiometric sensors [2,16], and noble metals [17] have been used
mostly for amperometric signal detection. Sensing materials based on plasticized organic polymers con-
taining different active substances have been employed for both potentiometric [2,15,18] and optical
sensors [19].

5. ANALYTICAL CHARACTERISTICS OF THE ELECTRONIC TONGUE

The main criteria for application of a sensor in a sensor array are its low selectivity and high cross-sen-
sitivity instead of high selectivity. Cross-sensitivity is understood here as the ability of a sensing ele-
ment to respond reproducibly to a number of different analytes in solution and/or to produce a stable
integrated response in the multispecies systems being analyzed. A dedicated special empirical method
and experimental procedure for estimation of the sensor cross-sensitivity has been proposed [20]. Three
parameters were suggested for characterization of sensor cross-sensitivity: average slope of sensor re-
sponse reproducibility and nonselectivity factors (for details, see [20]). Besides cross-sensitivity, such
terms as “low-selective” or “nonspecific” are used to describe sensor properties. These terms mean that
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sensors are not exclusively selective for one particular species in solution, but may respond to different
analytes. Use of these terms is consistent with recently published IUPAC recommendations on selec-
tivity [21].

Another important feature of sensors to be included in a multisensor system is the difference of
their responses in multicomponent media. Evidently, an array of cross-sensitive sensors producing iden-
tical signals in the analyzed media would be of little value. Thus, besides being cross-sensitive, the sen-
sors of the array should be different, i.e., they should display different responses to the same set of sub-
stances. Resulting sensor arrays should produce a “spectrum-like” response in multicomponent media,
allowing recognition or quantitative analysis of these media. Responses of 16 cross-sensitive sensors in
three different wines of B-type are shown in Fig. 1 as an example. There is no theoretical background
so far for an algorithm of choosing different (and most promising) sensors for the electronic tongue, and
this process still remains an empirical procedure.
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Fig. 1 Responses (potential values in mV) of the sensors of the electronic tongue in wine samples of denomination
B from three different vineyards.

A sensor array of an electronic tongue might be characterized by the same parameters as discrete
sensors or ISEs including selectivity, detection limits, etc. However, these parameters may have differ-
ent meanings for the sensor array and for the discrete ISEs. The parameters are more easily applicable
to quantitative analysis. A method for determination of selectivity and detection limits of the sensor
array was proposed in [22]. The principal differences between analytical characteristics of a discrete
sensor and a sensor array are: (i) the selectivity and detection limits of a sensor array depend not only
on the properties of the sensing materials used, but also on the composition of the sensor array; thus,
different versions of the electronic tongue can display different analytical characteristics in the same
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complex solutions under test; (ii) the selectivity and detection limits of a sensor array can be determined
only after data processing is completed by using multivariate analysis, and values of the parameters may
depend on the calculation method adopted [22].

In qualitative analysis, such as recognition or identification, the distinguishing abilities of an elec-
tronic tongue can be useful. This ability, and hence reliability of classification, depends also on the com-
position of the sensor array and the mathematical procedure adopted. Therefore, it is possible to iden-
tify the distinguishing ability of the electronic tongue and compare performance of different electronic
tongue systems in the same set of solutions using the same measurement protocol, as demonstrated in
[23].

6. ANALYTICAL PROCEDURE

The number of sensors used in the sensor arrays depends on the analytical task and on how many dif-
ferent sensing materials are available. The number of sensors in the array may vary from 4 to 40 [15].
Typically, the sensor array contains an excessive number of unit sensors, and thus is applicable for dif-
ferent analytical tasks. If this is the case, different smaller sub-arrays of sensors can be considered dur-
ing data processing. This approach permits one to reduce the size of data sets for processing without a
significant loss of analytical information. In some cases, sensors based on different principles of signal
transduction (e.g., potentiometric and amperometric) may be used simultaneously in the same sensor
array [24]. An example of measuring procedure for the electronic tongue based on potentiometric sen-
sors is described below. Potentiometric sensors were chosen for the example because to date they are
the most widespread type of sensors used in electronic tongue systems.

Sensors made of chalcogenide glass and PVC-based polymer membranes with enhanced cross-
sensitivity can be incorporated into a sensor array as described in [15,16,25-29 and refs. cited therein].
A number of conventional ISEs, e.g., pH glass electrode, sodium- and chloride-selective electrodes,
may also be included in the system [16].

Potentiometric measurements should be carried out using a multichannel voltmeter with high
input impedance. Values of the sensor potential should be measured against a conventional Ag/AgCl
reference electrode and stored as computer data files. Sample pretreatment prior to measurements is not
necessary.

The following procedure for potentiometric measurements with a sensor array can be recom-
mended. In [25-27], measurements performed on six Italian mineral waters, A-F, and tap water from
the Rome water supply system are described. The measurements were performed in seven experi-
mental sessions, one session per day, over two weeks. In each session, each sample was measured at
least three times, each time with a new portion. Two water samples were carbonated (E and F), there-
fore excess CO, was removed by intensive stirring prior to measurements. After a day of measure-
ments, no changes were observed which could be attributed to carbonation, viz., the pH change was
less than 0.05. A new bottle (sample) was used on each day of measurement. The final data set con-
sisted of 63 calibration points, also used for random full cross-validation, while 84 samples were con-
sidered as tests.

In the next stage of experiments, pieces of strawberry (4 to 5 g of fruit per 1 dm? of water) were
introduced into the bottles of two different mineral waters (i.e., C and D) in order to induce some dis-
turbance in the system. On the fourth day, measurements were performed on both the contaminated and
noncontaminated water samples.

In another experimental session, measurements were performed on different types of dry wines
[26-27]. First, the optimum measurement time was determined for red and white wine from the same
region. Then, 20 red wine samples of the same brand but from different vineyards were analyzed. For
a given wine sample, all individual sensors of the array reached a stable potential (within 0.1 mV/min)
in 15 min. Reproducibility of the sensor potential during two weeks of experiments was about 3 to
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4 mV. No noticeable drift of sensor potential was observed. The data set saved for processing consisted
of 66 points for calibration and validation as well as 60 points for test data.

7. PROCESSING OF A SENSOR ARRAY RESPONSE

In order to obtain final analytical results from the electronic tongue measurements, it is necessary to
apply certain mathematical signal processing procedures. PARC methods and multivariate calibration
techniques are used to analyze the response of the sensor array because output of the sensor array in a
multispecies solution is complex in most cases and cannot be described by using theoretical equations
(e.g., the Nernst or Nikolski—Eisenman equations). The processing of the data from the sensor array is
usually performed in two ways in order to extract qualitative and quantitative information. The most fre-
quently used methods are partial least-squares regression (PLS), PCA, and ANNs such as back-propa-
gation, self-organizing map (SOM), etc. All these methods are described in the literature [30-35] and
are recommended for processing of multivariate experimental data. The general recommendation is to
use nonlinear techniques when there is nonlinearity in the data (i.e., the relationship between depend-
ent and independent variables is nonlinear). Linear or projection methods should be used otherwise.
Sensor array data rarely have a high degree of nonlinearity. Therefore, they can be fitted successfully
by using projection methods, such as PCA and PLS [26]. PCA is applied for data structure exploration
and visualization. Soft independent modeling of class analogy (SIMCA), which is based on modeling
using PCA, is a powerful classification tool [31,33]. Most often, classification problems can be solved
using SIMCA, but in certain cases, back-propagation neural net should be used. A Kohonen net can be
particularly helpful in some cases for visualization purposes since it produces a 2D representation of
data of any dimension [34]. Quantitative calibration can be performed using PLS or, if data are highly
nonlinear, back-propagation neural net. Typically, projection methods and neural networks display sim-
ilar performance [26]. However, neural networks still lack such important features as interpretation, val-
idation, and model diagnostic tools. Therefore, projection methods are preferable. For precise perform-
ance, the data processing method should be chosen in each case [32,33]. This method selection depends
upon the data structure. The data processing methods used for different tasks are discussed below.

8. ANALYTICAL RESULTS
8.1 Qualitative analysis: Recognition, classification, identification

The objectives of qualitative analysis of multispecies solutions consist of discrimination, classification,
or identification of different samples. The most typical objects for this type of analysis are foodstuffs.
The electronic tongue has been applied to distinguish among different types of coffee, beer, wine, min-
eral water, sodas, etc. [15 and refs. therein]. Application of the electronic tongue enables one to dis-
criminate different groups of beverages (Fig. 2) [29] as well as the quality or type of each product
(Figs. 3-5) [25,26,29]. Discrimination among six different samples of coffee by the electronic tongue
is shown in Fig. 3 [25], the data being processed by SOM.
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Fig. 2 Discriminating abilities of the electronic tongue with respect to different types of nonalcoholic beverages.
Data processing performed using principal species analysis (PCA). PC1 and PC2 are produced by PCA when data
dimension is reduced from 30D (number of sensors in the array) to the 2D presentation shown in this picture. PC1
and PC2 are the most significant species containing the largest part of information about the analyzed beverages.
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Fig. 3 Discriminating abilities of the electronic tongue with respect to similar types of beverages (6 brands of
coffee). Data processing performed by using ANN-SOM. X and Y are relative coordinates produced during
processing of data from the chemical sensor array.

Discrimination among different kinds of mineral waters using the electronic tongue, as described

in Section 6, is shown as a PCA plot in Fig. 4 [25]. After a two-week-long measurement session, no
significant drift of the sensor readings was observed. Some changes of the sensor potential values were
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Fig. 4 Discrimination of mineral water samples and tap water by the electronic tongue. Data were processed by
PCA.

Fig. 5 Discrimination between pure mineral waters, and those contaminated by the organic matter, by the electronic
tongue. Contaminated samples are marked as C* and D* on the plot.

found in the samples of water A because of the very low content of mineral species in this water.
Nevertheless, each water sample could be distinguished from all others.

The electronic tongue is capable of discriminating between pure mineral water samples and those
contaminated by organic matter [25]. A corresponding PCA plot, containing all water samples, is shown
in Fig. 5. The contaminated mineral water samples were very different (appearing with extreme coor-
dinates on the PCA score plot) from the pure waters of the same type as well as from all other samples.
The samples of mineral water to be contaminated were chosen randomly. Thus, it is possible to con-
clude that contaminated water can be distinguished easily from pure using the electronic tongue. This

© 2005 IUPAC, Pure and Applied Chemistry 77, 1965—-1983



1974 YU. VLASOV et al.

is true at least for the variety of the waters studied, but taking into account that the chosen water sam-
ples represent a wide range of possible compositions, the results might be generalized.

The distinguishing ability of the electronic tongue has been investigated and visualized using
methods involving unsupervised learning, such as PCA, cluster analysis, and SOM. PCA is well known
and widely used for processing of multidimensional data sets obtained in chemical applications
[30-35]. The results of PCA are relatively easy to understand and interpret. SOM seems to be a less
commonly used, but promising, method for chemical data fitting [34]. A possible advantage of SOM is
related to its nonlinearity, which permits reduction of data of higher dimensions to the 2D form, while
in linear PCA the number of significant species can be higher than three. These two latter methods have
been compared by carrying out measurements with the electronic tongue on samples of Italian red
wines [26]. Two types of wines of different denomination produced in different regions of Italy from
different grapes were analyzed. These two wine types are marked as B and C. A PCA score plot dis-
criminating between red and white wine of a C-type and 20 samples of red wine of B-type is shown in
Fig. 6 [26]. The two samples of the C-type wine were easily distinguished from the B-type wine. Only
samples of B-type wine are shown in the PCA score plot in Fig. 7 [26]. All 20 samples of the wine of
the same brand, which are very close in taste and chemical composition, were recognized successfully
by using the electronic tongue. Figure 8 shows the same results as those presented in Fig. 7, but data
are processed using SOM. Obviously, the topology and relative positions of the sample images in Figs.
7 and 8 are significantly different. However, these differences are irrelevant for the analytical purpose,
namely, classification, because all the samples are correctly classified and reliably distinguished by
using both methods. The PCA plot (Fig. 7) seems to be more convenient for visualization, because the

-150

Fig. 6 A PCA score plot discriminating red and white wine of C-type and 20 samples of red wine of B-type. Two
samples of C-type wines can be easily distinguished from the B-type wine.
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Fig. 8 The same B-type wine samples as in Fig. 4 distinguished by using SOM; X- calibration measurements,
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distances between points in the plot are proportional to the distances between classes in the classifica-
tion model. In the SOM plot (Fig. 8), neurons are shown in fixed positions, although the distances be-
tween classes (winning neurons) are also different in reality.

In many practical applications, the class membership or sample identification has to be predicted.
For that purpose, different classification models can be constructed by using supervised techniques, for
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example, SIMCA based on PCA or the back-propagation neural network. For that purpose, the data
have been split into two subsets, namely, one for calibration and validation of the model and the other
for its testing.

8.2 Quantitative analysis

A very important field of application of the electronic tongue is quantitative determination of ions and
neutral species in multispecies solutions. Principal advantages from application of the electronic tongue
for quantitative analysis are:

(i)  determination of the concentration of ions in multispecies solutions, including ions for which no
selective sensors are known. Results for the determination of ion concentrations in model ground
waters are shown in the Table 2 [36].

(i)  higher selectivity and lower detection limit than for a single sensor.

Table 2 Concentrations of species in model groundwaters determined using the electronic

tongue.
Species Concentration actual Concentration found Standard deviation
/umol dm=3 /umol dm=3 /umol dm=3
Cull 5.00 x 1072 5.00 x 1072 5.00 x 104
1.00 x 1072 1.00 x 1072 7.00 x 107*
Znl! 1.0 x 1072 1.0 x 1072 7.00 x 1073
0.50 0.51 0.05
1.00 1.00 0.04
1.00 1.10 0.1
Mn!! 5.0 5.6 2
50 52 2
1.00 1.00 0.03
Felll 5.00 5.00 0.09
50 51 1
50 51 1
Ca?* 100 100 4
1000 1000 70
10000 9900 300
Mg+ 50 49 2
100 100 7
500 490 50
1000 1000 10
5000 4900 200
S0, 100 100 3
1000 1000 70
5000 5000 80
Na* 200 200 7
400 390 20
2000 2000 100
Cr 300 300 7
1200 1100 20
40000 42000 1000
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The electronic tongue can be calibrated by using different methods, the most typical being PLS
and back-propagation neural network. PLS is a widely used method of multivariate calibration in chem-
ical data processing [31-33]. ANN became popular in recent years (promising, but “hot and risky” [33])
and was also reported in relation to sensor arrays [35]. In some cases, ANN could be especially useful
for processing significantly nonlinear data, but in many cases, both PLS and ANN methods should pro-
duce similar results. A neural network with one hidden layer and a hyperbolic tangent as the transfer
function are used in the majority of calculation tasks.

For PLS, the data are split into two sets, that is, one for calibration and validation of the model
and the other for its testing. Cross-validation should be used in order to construct a reliable calibration
model. For ANN, the data have been split into three subsets, that is, one for calibration, the other for
validation of the model, and the last one for its testing. Cross-validation must be performed in order to
avoid ANN overtraining. The best network configuration chosen by using cross-validation is applied for
evaluation of the test data. The calibration and test subsets have to be completely independent. Usually,
the data obtained during the first days of an experimental session were used for calibration and valida-
tion, and the data obtained during the following days were used for tests.

The capabilities of both the PLS and ANN methods have been illustrated by means of an exam-
ple in which the content of some organic substances, such as ethanol, organic acids, etc., were deter-
mined by using the electronic tongue [37]. The results of the determination of total acidity, the content
of ethanol, (+)-tartaric acid [(2R,3R)-2,3-dihydroxybutanedioic acid] and shikimic acids [(3R,4S,5R)-
3,4,5-trihydroxycyclohex-1-ene-1-carboxylic acid], as well as pH of the wine samples, are shown in
Table 3 (data processed by PLS) and Table 4 (data processed by ANN) [26]. Comparing the results of
quantitative analysis, one may conclude that the content of species in the wine, calculated by using PLS
(Table 3) and ANN (Table 4), are not identical, but still very close to one another. The precision and
error values obtained by using these methods are also comparable. Thus, both PLS and ANN can be
used to process the results of the measurements performed with the use of the electronic tongue.
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Table 3 Results of quantitative analysis of red Barbera wine samples using the electronic tongue. Data
processing performed by PLS.

Wine Alcohol actual Alcohol found Std. deviation Mean error
sample vol. fraction/% vol. fraction/% vol. fraction/% s/%*
1 12.7 13.3 0.2 5%
8 13.4 13.58 0.08 1%
6 12.79 12.9 0.1 1%
16 12.08 13.1 0.1 8 %
pH actual pH found Std. deviation Mean error
2 347 342 0.01 1%
3 3.52 3.49 0.01 1%
4 342 3.46 0.01 1%
Tot. acidity actual/g L Tot. acidity found/g L} Std. deviation/g L Mean error
1 9.83 8.65 0.09 12 %
11 9.68 9.32 0.01 4 %
12 9.38 9.53 0.03 2 %
13 9.00 9.84 0.02 9 %
14 10.20 8.27 0.05 19 %
C(tart. ac.) actual/g Ll C(tart. ac.) found/g Ll Std. deviation/g L} Mean error
1 441 4.37 0.04 1%
12 4.17 4.10 0.03 2 %
13 3.5 3.92 0.02 12 %
14 3.73 4.02 0.07 8 %
C(shik. ac.) actual/mg L1 C(shik ac.) found/mg L Std. deviation/mg L1 Mean error
2 27 33.3 0.4 23 %
6 28 39 2 41 %
19 17 15 2 10 %
20 37 24 2 36 %

Number of the sensors in the array, 29. Number of sensors considered during the data processing by PLS: for (+)-tartaric acid,
shikimic acid, and total acidity, 14; for pH, 4. For each parameter, a separate calibration model was built by PLS. The number
of species used in the calibration model: for tartaric acid, 10; for shikimic acid, 12; for total acidity, 9; for pH, 1.

*Mean relative error was calculated as
N )12
s=—(X L
nii-1 X

where n is the number of replicas, x is a reference concentration value used for calibration, x; is the value predicted by the ET
for the test set.
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Table 4 Results of quantitative analysis of red Barbera wine samples using the electronic tongue. Data
processing performed by ANN.
Wine Alcohol actual Alcohol found Std. deviation Mean error
sample vol. fraction/% vol. fraction/% vol. fraction/%
1 12.70 12.74 0.01 1%
6 12.79 12.40 0.02 3%
8 13.40 12.01 0.02 10 %
16 12.08 12.24 0.01 1%
pH actual pH found Std. deviation Mean error
2 347 3.54 0.01 2 %
3 3.52 3.59 0.01 2 %
4 3.42 3.59 0.01 5%
Tot. acidity actual/g L Tot. acidity found/g L} Std. deviation/g L Mean error
1 9.83 9.81 0.01 1%
12 9.38 10.55 0.01 12 %
13 9.00 9.23 0.01 3%
14 10.20 9.36 0.05 8 %
C(tart. ac.) actual/g L1 C(tart. ac) found/g L Std. deviation/g L Mean error
1 4.41 3.76 0.01 15 %
12 4.17 4.13 0.02 1%
13 3.50 3.56 0.01 2 %
14 3.73 4.02 0.08 8 %
C(shik. ac.) actual/mg L! C(shik. ac.) found/mg L! Std. deviation/mg L! Mean error
2 27 34.4 0.1 27 %
6 28 31.9 0.2 14 %
19 17 29.2 0.2 72 %
20 37 38.8 0.2 5%

Number of the sensors in the array: 29. Number of sensors considered during the data processing by ANN: 14 for all

parameters. For each parameter, a separate calibration model was built by ANN.

Some other examples of quantitative application of the electronic tongue (data processed by PLS)

o heavy metal determination in polluted water (Table 2) [36];

. in situ determination of U(IV) and U(VI) in samples of mine water (Table 5) [38]; and
. determination of selected species in different mineral water samples (Table 6) [25,26].
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Table 5 Concentration of uranium(VI), iron(II), and iron(III) in solutions
modeling water in a flooded uranium mine, determined by using the
electronic tongue.

Species Concentration actual Concentration found Std. deviation

/mmol dm™3 /mmol dm™3 /mmol dm3
Fell 0.10 0.21 0.04
Fell 1.0 1.6 0.2
Fell 5.0 43 0.4
Fell 10 8 1
Fell 100 100 6
Felll 0.1000 0.1000 0.001
Felll 1 1.4 0.6
Felll 5.0 4.8 0.5
Felll 10 18 9
Felll 100 100 5
U0,%* 1 3 1
Uo,%* 16 26 7

Table 6 Results of quantitative analysis of mineral waters using the electronic tongue.

Water Conductivity actual ~ Conductivity found  Std. deviation = Mean error
/uS em! /uS em! /uS ecm! s1%
Levissima 107.5 110 9 5
Fuiggi 156 155 1 6
Uliveto 1388 1414 69 4
Sangemini 1333 1302 204 14
Ferrarelle 1800 1792 120 5
SPellegrino 1306 1516 112 16
Tap * 976 116 -
Dry residual actual ~ Dry residual found  Std. deviation =~ Mean error
/g L1 /uS cm! /uS cm! s/%
Levissima 0.0735 0.075 0.006 8
Fuiggi 0.1065 0.105 0.002 2
Uliveto 0.986 1.03 0.05 5
Sangemini 0.9550 0.9 0.2 15
Ferrarelle 1.283 1.28 0.08 5
SPellegrino 1.109 1.10 0.09 6
Tap * 0.70 0.08 -
SiO, actual content ~ SiO, found content ~ Std. deviation ~ Mean error
/mg L1 /mg L1 /mg L1 5/%
Levissima 5.8 5.9 0.4 5
Fuiggi 18.80 19.7 0.6 5
Uliveto 7.0 7.1 0.2 3
Sangemini 24.50 22 2 10
Ferrarelle 83 85 7 7
SPellegrino 9 7.9 0.5 12
Tap * 55 7 -

*For tap water, quantitative analysis results are not available.
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

a; activity in solution of ion i

ANN artificial neural network

E potential difference between working and reference electrodes
E° standard potential

F Faraday constant

gasFET gas-sensitive field-effect transistor
immunoFET immunoassay field-effect transistor

ISE ion-selective electrode

ISFET ion-selective field-effect transistor

K; j selectivity coefficient of ion i against ion j
opt(r)ode optical sensor

PARC pattern recognition

PC1 principal component 1

PC2 principal component 2

PCA principal component analysis

PLS partial least-squares regression

PVC poly(vinyl chloride) [poly(1-chloroethylene)]
R gas constant

SIMCA soft independent modeling of class analogy
SOM self-organizing map

T thermodynamic temperature

Z; charge number of ion i
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