IUPAC-AOCS Workshop on Fats, Oils & Oilseeds Analyses & Production December 6-8, 2004 Tunis, Tunesia

CHEMICAL VS ENZYMATIC INTERESTERIFICATION

Wim De Greyt De Smet Group Belgium

INTERESTERIFICATION: chemical vs enzymatic

• CHEMICAL: - 'Random' Interesterification

(FA-distribution according to law of probability),

- Preferred catalyst: CH₃ONa (powder)

- ENZYMATIC : Lipase catalysed
 - Lipozyme TL IM (immobilised)
 - 'Selective' FA-interchange on sn-1,3 positions

INTERESTERIFICATION: PAST SITUATION

• CHEMICAL INTERESTERIFICATION

- High oil losses (up to 5%, due to 'wet' catalyst inactivation)
- Risky operation (related to use of catalyst : e.g. Na/K alloys)
- Largely replaced by partial hydrogenation (UFA vs SFA, Trans Fatty acids was not an issue)

- ENZYMATIC INTERESTERIFICATION

- Expensive catalysts, low activity and stability, high operating cost
- Only used for high value-added products (CBE, structured lipids)

INTERESTERIFICATION: CURRENT SITUATION

Increasing trend to reduce / exclude trans fatty acids from food

- ⇒ because of stricter legislation
 - trans labelling in USA from 2006
 - very strict Danish regulation : max. 2% in food fats
- increasing pressure from consumer organisations

Don't partially hydrogenate me www.bantransfats.com

Increasing trend to avoid chemicals in food processing

Major USA food producers (Mc Donalds, Fritolay, Nabisco,...) are replacing *trans* fats by low /zero TFA alternatives

INTERESTERIFICATION: CURRENT SITUATION

Increased demand for:

low trans products: < 5% on fat basis zero trans products: <0.5% on fat basis

INTERESTERIFICATION has become the alternative fat modification technology to PARTIAL HYDROGENATION

Past: Chemical interesterification for commodity fat blends Enzymatic for 'specialty' fats (SUS fats)

Today: Cost-effective enzymatic IE for commodity fats

CHEMICAL INTERESTERIFICATION

CHEMICAL INTERESTERIFICATION: PRINCIPLE

CHEMICAL INTERESTERIFICATION CATALYSTS

Type of catalyst	Concentration	Temperature	Time
	%	°C	min
Na, K, Na-K alloys	0.1-1	25-270	1-120
CH₃ONa, C₂H₅ONa	0.05-1	50-120	30-60
NaOH, KOH	0.5-2	150-250	90
NaOH + Glycerol	0.05-0.1	60-160	30-45
Sodium stearate	0.5-1	250	60
NaH, NaNH₂	0.2-2	170	3-120

CHEMICAL INTERESTERIFICATION CATALYST: Naocha

- Trivial names: Sodium methoxide; Sodium methylate
- Very alcaline catalyst (stronger than NaOH)
- Very reactive : exothermic decomposition into NaOH and CH₃OH in presence of moisture
- Hazardous product, requiring carefull handling and controlled storage
- Available in powdered form for interesterification, or dissolved in MeOH (25%) for biodiesel production
- Supplied in plastic bags (10kg) sealed in drums

CATALYST INACTIVATION

Pois	on	Catalyst	Catalyst inactivated (% on oil)					
Туре	level	Na	CH₃ONa	NaOH				
Water	0.01 %	0.013	0.03					
fatty acid	0.05 %	0.004	0.01	0.007				
peroxide	1.0	0.0023	0.0054	0.004				
_								
total catalyst i	nactivated	0.0193	0.0454	0.0011				

Feedstock Oil needs to be very dry and low in FFA

CHEMICAL INTERESTERIFICATION: OIL QUALITY

Chemical ——— semi-refined (neutralized and bleached)

Physical ——— fully refined (bleached and steam refined)

FFA: < 0.05 %

Phosphorus: < 2 ppm

Moisture: < 100 ppm

Peroxide value : < 0.5 meq/kg

p-Anisidine value : < 10

CHEMICAL INTERESTERIFICATION: OIL DRYING

Physical equilibrium of water in oil (ppm)

Temp	5 mbar	10 mbar	25 mbar	50 mbar	75 mbar
75°C	31	63	156	310	469
100°C	17	34	85	171	256
125°C	10	21	53	105	158
150°C	7	14	36	72	108
175°C	6	12	30	60	90

In practice: equilibrium not reached

125°C - 25 mbar - 60 min gives 80 ppm water

INTERESTERIFICATION PROCESS

ADDITION OF THE CATALYST

- -Addition of 0.05-0.1% NaOCH₃
- -'Aggressive' catalyst
- Avoid direct contact

Automatic dosing

Catalyst dry storage tank

Rotary dosing valve

Catalyst dosing tank

START OF THE REACTION

- -Formation of deep red-brownish color
- -Usually appears shortly after catalyst addition (few minutes)

INTERESTERIFICATION PROCESS

PROLONGATION OF THE RANDOMISATION

- Randomisation usually occurs quite fast (10-15 min.)
- Industrially reaction time is longer: 30-60 min.
- No quick on-line method to check completion/status of the reaction
- Once 'Randomization' is reached, reaction will continue (until destruction of catalyst), but with no 'net' effect
- -Too long reaction will darken oil & give color fixation

CHEMICAL INTERESTERIFICATION: OIL LOSSES

Side reactions leading to oil losss (catalyst related)

→ 1 mole NaOCH₃ gives 1 mole FAME & 1 mole Na-soap

acid catalyst
inactivation

$$\longrightarrow$$
 % (FAME + FFA) = +/- 10 * % NaOCH₃ added

- Oil loss during postbleaching = 0.3 * % bleaching earth
- Oil loss during deodorisation = +/- 1.3 * % (FFA+FAME)

0.1% of NaOCH₃ catalyst
Overall oil loss: min. 1.5%
0.5% bleaching earth

CHEMICAL INTERESTERIFICATION: PROCESS STAGES

- 1. Neutralisation: FFA $\xrightarrow{\text{NaOH}}$ FA soaps (no removal)
- 2. Drying: $H_20 < 100$ ppm; preferably < 50 ppm $120^{\circ}\text{C}; < 20$ mbar
- 3. Reaction with catalyst: 90-100 °C during 30 min. at 20 mbar max. 0.1 %; preferably 0.05% catalyst
- 4. Reaction stop: water (acid) acid activated silica
- 5. Bleaching: 0.2-0.5% Bleaching earth
- 6. Deodorising: 220-230°C (deodo) / 240-250°C (stripping)

CHEMICAL INTERESTERIFICATION: SIDE REACTIONS

NaOCH₃: strong 'alkaline' catalyst

will catalyze also unwanted side-reactions

- -Degradation of tocopherols
- -Formation of tocopherol esters
- -Formation of di-alkylketones
- -Some formation of phytosterol esters

———— more side products at higher catalyst conc. & temperature

max. catalyst conc. : 0.1% - max. temperature : 120°C

→ May affect oxidative stability

ENZYMATIC INTERESTERIFICATION: PRINCIPLE

ENZYMATIC INTERESTERIFICATION OF SUS FATS: PRINCIPLE

ENZYMATIC INTERESTERIFICATION

Enzyme: LIPOZYME TL IM

- Triacylglycerolhydrolase (also named Lipase)
- Lipase from Thermomyces lanuginosus. (in past from pancreas)
- sn-1,3 specific and heat stable (max. temp. : 75°C)
- HALAL approved

Immobilized

- For use in fixed bed processes
- No enzyme in finished oil product
- Enables re-use of enzyme for better process economy
- Stabilizes the enzyme

ENZYMATIC INTERESTERIFICATION

Enzyme: LIPOZYME TL IM

Enzyme inactivation due to: (stability)

Process temperature (max. 70°C)

Radicals (Peroxides)

Polar impurities (phosphatides, soaps

Secondary oxidation products: ketons, aldehydes...

Trace elements (e.g. Nickel)

Quality of Incoming oil is important: degummed - bleached-(deodorised)

ENZYMATIC INTERESTERIFICATION

Enzyme: LIPOZYME TL IM

Enzyme productivity: kg ElE oil/kg enzyme

Depending on incoming oil quality

For good quality oil: min. 2500 kg EIE oil/kg enzyme

Productivity up to 4000 kg EIE oil/kg enzyme in pilot tests

Enzyme activity - Flow rate

Slow reaction: 1-2 kg IE oil/kg enzyme.hr

Enzyme in use for min. 2500 h (> 100 days)

ENZYMATIC INTERESTERIFICATION: PROCESS ISSUES

Batch vs Continuous (fixed bed) process

Single or Multiple fixed bed reactor

Multiple fixed bed reactor placed in series or in parallel

Flow rate: variable or constant

Process control - Control of enzymatic conversion

Cross-contamination

ENZYMATIC INTERESTERIFICATION: PROCESS ISSUES

CHEMICAL INTERESTERIFICATION ---> BATCH

- Production of a large number of (small) batches
- Low degree of cross-contamination

ENZYMATIC INTERESTERIFICATION --> CONTINUOUS

- Limited cross-contamination (plug flow)
- Less suitable in case of many stock changes
- More suitable for alternative approach:
 Production of larger batches of 'bulk' EIE, followed by dry fractionation/blending to fine-tune properties

ENZYMATIC INTERESTERIFICATION: OPERATION

SINGLE FIXED BED REACTOR

- Enzyme Activity decreases over time
- Flow to be adjusted to maintain conversion
 - Max. Initial flow :10 kg IE oil / kg catalyst.hr (blend dependent)
 - Regular analyses of the conversion required
 - Low production rate at the end of the enzyme's lifetime

ENZYMATIC INTERESTERIFICATION: OPERATION

MULTIPLE FIXED BED REACTORS IN SERIES

- Different enzyme activity in each reactor
 - Lowest enzyme activity in first reactor: GUARD EFFECT
 - Highest enzyme activity in last reactor
 - Average production rate: 1-2 kg IE oil / kg enzyme.hr

ENZYMATIC INTERESTERIFICATION: OPERATION

MULTIPLE FIXED BED REACTORS IN SERIES

- GUARD EFFECT: only when reactors are in series
 - Absorption of 'harmful' components on (partially spent) enzyme (reactor 1)
 - Protection of more active enzyme in further reactors
 - Longer life time and higher productivity
 - Difficult to quantify

Process Comparison Chemical vs. Enzymatic Interesterification

Less steps with enzymatic process

Chemical interesterification

Pref. Batch Process

Enzymatic interesterification

Pref. Continuous process

Pilot enzymatic interesterification reactors with different enzyme capacities

Single stage: 1 x 10 kg - 1 x 100 kg

Multiple stage:

 $4 \times 10 \text{ kg} - 4 \times 25 \text{ kg}$

Specific control of melting profile

Being able to control the melting characteristics, enzymatic interesterification can produce fat with physical properties similar to fat produced using chemical interesterification.

Interesterification of cocoabutter (high SUS fat)

Effect Chemical vs enzymatic LE. on oil quality

PS / SFO	10/90			20/80			30/70			40/60			50/50		
	Feed	Chem	Enz	Feed	Chem	Enz	Feed	Chem	Enz	Feed	Chem	Enz	Feed	Chem	Enz
Color															
Yellow	11	15_	10	15	10	9	16	_11_	8	19	16	8	19	18	10
Red 51/4	1.0	2.0	1.0	1.2	2.3	0.9	1.8	2.2	1.2	2	3	1.4	2.1	3.4	1.0
Tocopherol															
(ppm)	701	252	505	639	197	412	581	281	426	546	185	425	463	182	366
DAG (%)	1.5	3.9	2.0	1.7	3.7	3.0	1.9 (4.5	3.5	2.14	4.2	3.0	2.4	4.9	3.5
Trans fats															
(%)	0.50	0.67	0.75	/	1	/	0.50	0.62	0.61	1	1	/	1	1	1

- EIE oil has a lighter colour than CIE oil (after pretreatment)
- EIE oil has a higher tocopherol content than CIE oil
- EIE oil has a lower diglyceride content than CIE oil

ENZYMATIC vs CHEMICAL INTERESTERIFICATION

+ CHEMICAL INTERESTERIFICATION

Fully random: final product determined by FA comp of blend, not by triglyceride composition

Highly reproducible and cost-effective

Easy Process (batch)

- CHEMICAL INTERESTERIFICATION

Hazardous catalyst: safe handling required

Side reactions can occur (at high catalyst conc./temp.)

Risk of flavor reversion & reduced stability

Loss of valuable minor-components (e.g. tocopherols)

ENZYMATIC vs CHEMICAL INTERESTERIFICATION

+ ENZYMATIC INTERESTERIFICATION

Cost-effective when running continuously on 'clean' bulk fat Simple, clean & safe - 'Natural' process No side reactions, no supplementary post-bleaching Lower capital investment cost compared to chemical process

- ENZYMATIC INTERESTERIFICATION

Sensitive & costly catalyst (temp, moisture PV, gums, impurities)

Less easy stock-change (cross-contamination)

To certain extent triglyceride composition dependent

New & still rather unknown

Investment and operating cost - A comparison

Cost in US\$/ton	Chemical IE	Enzymatic IE	Hydro
Investment cost	6.5	3.7	9.0
Operating cost	21.0	34.7	48.7
Oil losses	10.5	2.3	0.7
Total costs	38.0	40.8	58.4

De Smet Group

Worldwide Partnership

